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I. Introduction
Since the formulation of the so-called high temperature

series expansion (HTSE) by Zwanzig,1 thermodynamic
perturbation theories developed along this line have been
one of the most fruitful procedures to obtain the thermody-
namic properties of fluids and solids, and this is reflected in
most of the books published on liquid state physics.2

However, most of these books devote only a few pages to
perturbation theories, limiting the contents to the most
common topics on the subject, although some books3-5 and
review articles6,7 include a more extensive analysis of
perturbation theories, particularly the excellent review by
Barker and Henderson.6

The perturbation strategy not only plays an important role
in the calculation of bulk fluid thermodynamic properties in
the context just mentioned but also, in recent years, has
become more and more important in the calculation of bulk
solid thermodynamic properties, in classical density func-
tional theory, and in the Ornstein-Zernike integral equation
theory. In addition, various novel perturbation methods have
been formulated to tackle some chemical problems whose
theoretical handling in the past depended to a great extent
on macroscopic thermodynamic approaches.

In the last two decades approximately, there have been
significant advances in all these kinds of theories. In spite
of this, there is not available a review covering the recent
advances in all these topics. In this review, not only we will
include progress of the thermodynamic perturbation theory
for the bulk fluid and bulk solid phases, but we also will
outline the progress of the perturbation strategy in classical
density functional theory, in the Ornstein-Zernike integral
equation theory, and in applied research on problems of
chemical interest.

Perturbation procedures proposed in each of the fields just
mentioned have acquired such importance and development
that they would deserve an independent review for each of
the fields. The reason for grouping them together in a single
review is that, as we will see later, the different fields are
not unrelated; on the contrary, theories developed within one
of these fields are useful in another. Therefore, an overview
to the developments about perturbation theories in all these
fields seems to us particularly useful. We will devote special
attention to the most novel theories and applications, that
will deserve more attention in the nearest future.
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II. Progress in Perturbation Theories for Bulk
Fluid and Solid Phases

Some of the most recent advances in perturbation theories
for simple fluids are related to the so-called λ-expansion. A
detailed and excellent account of this expansion can be found
in ref 3. We will give here only a brief summary for
reference.

Let us consider a spherically symmetric pair potential u(r)
consisting of the sum of two contributions, a reference
potential u0(r) and a perturbation u1(r). Let us now couple

these two contributions by means of a parameter λ, with 0
e λ e 1, to form a new potential u(r,λ) of the form

so that, for λ ) 0, u(r,λ) reduces to the reference potential
and, for λ ) 1, we recover the full u(r) potential of the system
of interest. Then, the Helmholtz free energy can be expanded
in a power series of λ in the form

where F0 is the free energy of the reference system with
potential u0.

II.1. High Temperature Series Expansion and Its
Most Recent Developments

For the fluid with the full potential u(r), the series 2 leads
to3

where � ) 1/kT, in which k is the Bolzmann constant and T
is the absolute temperature, the angular brackets mean an
average, which is performed in the reference system (sub-
script 0), and

is the contribution to the configurational energy of the system
due to the perturbation u1(r).

From eq 3, the free energy of the system can be expressed
as an inverse temperature expansion whose terms are related
to fluctuations around the mean perturbation energy calcu-
lated in the reference system. This is the so-called high
temperature series expansion (HTSE), first developed by
Zwanzig1 in a somewhat different way.

Expression 3 is the basis for the calculation of several of
the low-order perturbative terms by means of computer
simulation, as we will see later, but it is not appropriate for
theoretical calculations. For the latter purpose, a more
appropriate expression can be obtained by expressing the
free energy of the fluid with pair potential 1, with λ ) 1, in
the alternative way3

and taking for the radial distribution function (rdf) g(r,λ) of
the fluid with pair potential 1 its series expansion in terms
of λ

where g0(r) is the rdf of the reference fluid. This allows us
to obtain the derivatives involved in expansion 2. The first
derivative
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involves only the rdf of the reference fluid, which often is
available from integral equation theories. Expression 7 was
also derived by Zwanzig1 in a somewhat different way.

The higher order derivatives involve higher order correla-
tion functions of the reference fluid, which cannot be easily
obtained, so that theoretical calculations of higher order terms
can be carried out only in an approximate way.

In any case, the above-mentioned procedures lead to
express the thermodynamic and structural properties as series
expansions in the inverse of the reduced temperature T* )
kT/ε. Thus, for example, the Helmholtz free energy

and the rdf

Monte Carlo Perturbation Theory

Henderson et al.8,9 developed a procedure to obtain the
first few terms in the perturbative expansions from simula-
tions performed in the reference system on the basis of eq
3. The zero- and first-order terms in expansion 9 are given
by9

and

respectively, where Ni is the number of intermolecular
distances in the range (ri,ri+1), with ∆r ) ri+1 - ri, i ) 0,
1,..., and u1*(r) ) u1(r)/ε.

From the corresponding terms of the rdf, the zero- and
first-order terms in the expansion of the compressibility factor
and the first- and second-order terms in the expansion of
the excess internal energy can easily be obtained using the
virial and energy equations, respectively. The corresponding
terms for other thermodynamic properties can be obtained
from standard thermodynamic relationships.

Several authors have performed this kind of simulations
for the square-well (SW)8-13 and, very recently, for other
potential models with a hard spherical core such as the
Sutherland14,15 and the triangular-well (TW)16 potentials.
These simulations show that the second-order term in the
free energy expansion is approximately 1 order of magnitude
smaller than the first-order term, and the third-order term
is10 1 order of magnitude smaller than the second-order term,
so that often can be neglected. Moreover, the statistical
uncertainty of the third-order term is of the same order of
magnitude as the term itself. Within the framework of the
HTSE, these simulations can be considered as “exact”, as

no theoretical approximation is involved. Therefore, they
signal the limiting accuracy achievable for any theoretical
approximation. The comparison of the results obtained from
the perturbative expansion truncated at first order in the rdf
and the compressibility factor and at second order in the free
energy, with the perturbative terms obtained in the way just
described, with the actual simulation data for the square-
well fluids reveals an overall excellent accuracy for super-
critical temperatures. The agreement worsens as temperature,
potential range, and density decrease.

Alder et al.10 reported parametrizations for the perturbative
terms Fn/NkT, with 1 e n e 4, of the free energy of the SW
fluid with well width λ ) 1.5 derived from computer
simulations. Barker and Henderson17 also reported param-
etrizations for the same value of λ for Fn/NkT, with n ) 1,
2, obtained on the basis of their computer simulation data
for the same quantities.

The MC procedure for obtaining the first- and second-
order terms in the perturbative expansion (eq 8), just
described, was applied also to the Lennard-Jones (LJ) fluid,18

although the MC data for F1 and F2 were reported only in
graphical form. Very recently, new MC data for F1 and F2

have been reported for this potential model.19

In a recent paper,20 the MC procedure has been used to
obtain the first three terms in the perturbative expansion of
the free energy for liquid cooper, using a soft-sphere
reference system. The results obtained show that the series
truncated at second order provides virtually exact results
when optimal parameters are used for the reference potential.

Barker-Henderson Second-Order Perturbation Theory

In the Barker-Henderson theory,21 the first-order term in
expansion 8 is the same as in the expression resulting from
eq 7, namely

For the second-order term, they propose two approximations,
namely the macroscopic compressibility approximation
(MCA)

and the local compressibility approximation (LCA)

The values of F1/NkT calculated from eq 12 are in excellent
agreement with those calculated from simulation, provided
that we use an accurate expression for g0(r). Instead, the
second-order term F2/NkT calculated either from eq 13 or
from eq 14 strongly underestimates the magnitude of the
corresponding simulation values for the SW fluid at high
densities for any well-width λ and even at low densities for
small well widths.11 A procedure to sum up the series within
the macroscopic compressibility approximation has been
derived,22,23 but the contribution of the higher-order terms
within this approximation is very small.22

Smith et al.18 derived a more accurate expression for the
second-order term in the free energy expansion. This
approximation was shown11 to provide much better agree-
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ment with the simulation data of F2/NkT for the SW fluid
than the LCA or MCA approximations. The agreement was
very satisfactory for low to moderate densities for potential
widths 1.1e λe 2.0 and semiquantitatively correct at higher
densities for 1.6 e λ e 2.0. The procedure has the drawback
that it requires quite complex numerical calculations. An
analytical expression for this term based on similar grounds
was reported in ref 24.

Simple analytical expressions for the first- and second-
order terms in HTSE of the free energy of the square-well
fluid of variable width have been developed by several
authors.25-28 Using similar procedures, such as those derived
in refs 24-26, the first-order perturbation theory has been
recently applied to the TW fluid.29

The inverse temperature expansion of the free energy of
the SW fluid can be used for the square-shoulder (SS) fluid
too and can be generalized to any number of potential wells,
or shoulders, or combinations of the two. This is the basis
of a discretization procedure30 that allows one to obtain the
thermodynamic properties of fluids with continuous potentials
on the basis of the perturbation theory for the SW fluid or
parametrizations based on it.

The Barker-Henderson theory can be applied as well to
potentials with a soft core. This can be achieved by defining
a suitable temperature-dependent effective diameter,31 al-
though the definition of the effective diameter is not unique
and the accuracy may be affected by the definition adopted.32

The BH theory in the MCA approximation has been
improved recently in two ways.33 In the first place, an
empirical correction was introduced into the MCA for F2.
In the second place, a new definition of the effective diameter
for soft-core potentials, leading to an exact prediction of the
second virial coefficient, was adopted. Moreover, by using
an approximate expression for the rdf of the HS reference
fluid and for the various integrals involved, the theory was
formulated in an analytical way for several model potentials.
The BH theory modified in these ways leads to improved
prediction of the liquid-vapor coexistence as well as accurate
prediction of the thermodynamic properties of these model
fluids.

The Weeks-Chandler-Andersen Perturbation Theory

A more appropriate choice of the effective diameter leads
to the Weeks-Chandler-Andersen (WCA) perturbation
theory,34 in which the second-order term in the free energy
expansion is negligible. While the BH effective diameter is
only temperature dependent, the WCA effective diameter is
temperature and density dependent. Simple parametrizations
for the BH and WCA effective diameters for the Lennard-
Jones fluid have been reported by Verlet and Weis.35 For
this potential model, the results of the WCA theory are
superior to those of the BH theory either in the MCA or in
the LCA approximations. The reliability of several equations
of state for the hard-sphere fluid and the effect of different
choices of the effective diameter for reproducing the
thermodynamic properties of the WCA reference system have
been analyzed in ref 36. However, for potentials softer than
the LJ potential, Lado has shown37 that the WCA predictions
can be improved by combining the WCA prescription for
the rdf of the reference system with a thermodynamic self-
consistency condition.

The WCA theory is not suitable for densities close to the
freezing line, because the effective hard-sphere diameter
becomes so large that the reduced density of the reference

hard-sphere fluid lies in the metastable fluid region,38 for
which it is difficult to obtain good theoretical solutions for
the rdf g0(r) of the hard-sphere fluid. It has been proposed
either to use a reduced effective diameter at high densities
by introducing a density-dependent cutoff distance for the
reference potential,38 instead of a fixed cutoff distance at the
minimum of the potential as in the original WCA theory, or
to use a reference potential whose repulsive range decreases
as density increases.39 These two procedures lead to improved
accuracy of the WCA theory in the high density region for
a number of simple potential models.

The WCA theory was modified by Ben-Amotz and Stell40

by using directly a hard-sphere reference system, instead of
indirectly using a soft-repulsive reference system which in
turn is related to the HS system. The modified WCA theory
is more flexible with the choice of the effective HS diameter
while providing nearly the same results as the original WCA
for LJ fluids.

Very recently, Heyes and Okumura performed molecular
dynamics (MD) simulations for the equation of state of the
WCA reference fluid and fitted the results to a simple
equation of state.41

Simple Crystalline Solids

The Monte Carlo (MC) procedure for obtaining the first
few terms in the inverse temperature expansion of the
thermodynamic and structural properties can also be applied
to crystalline solids.15 The same is true for first-order
perturbation theory,42,43 the Barker-Henderson second-order
perturbation theory,15,44-46 and the WCA perturbation
theory.47-50 On the basis of the WCA theory, a simple
parametrization of the free energy for LJ solids has been
developed51 which provides excellent agreement with ex-
perimental data for the melting curves of simple solids.
Solid-solid transitions in systems with hard-sphere potential
with added short-ranged soft repulsions beyond the hard core
were studied by means of first-order perturbation theory.52

It was found that the presence of the soft repulsion leads to
a rich variety of crystalline structures.

Several recent papers53-55 analyzed the reliability of the
first-order perturbation theory, with either the BH or the
WCA choices for the effective diameter of the HS reference
system, to predict the thermodynamic properties of simple
fluids and solids. It was found that the first-order WCA
theory accurately predicts the solid-liquid equilibria in LJ
models of simple systems53 as well as for other potential
models with a hard spherical core54 of the type used in
models of colloidal suspensions. In the latter kind of potential
models, the first-order theory also provides reasonable results
for the fluid-fluid transition for not too short-ranged
potentials, whereas for very short-ranged potentials the theory
gives unphysical results.54

The accuracy of the first-order perturbation theory for
obtaining the thermodynamic properties of fluids with
repulsive interactions with diverse degrees of softness and
attractive interactions with diverse ranges was analyzed in
ref 55. It was found that for purely repulsive potentials the
WCA theory only fails for potentials much softer than the
repulsive part of the Lennard-Jones potential. Concerning
the attractive interactions, the theory was shown to be very
accurate for the LJ potential except perhaps near the critical
density and at very low densities. In both cases, the first-
order BH theory gave slightly poorer results. The region of
inaccuracy in the WCA theory widens as the range of the
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attractive interactions decreases, but the theory is still
accurate in the high density region. This suggested55 the
usefulness of the WCA theory to study several interesting
properties arising in some fluids at high densities, such as
the anomalous behavior of certain thermodynamic properties
or the disappearance of the critical point as the attractive
interactions become more and more short-ranged.

Perturbation Theory for Systems with Strongly Repulsive
Interactions

Zwanzig’s HTSE1 is expected to fail when the perturbation
u1(r) is strongly repulsive and rapidly varying or singular.
To cope with such situations, it was proposed56 to use a new
imaginary potential u(r,λ), instead of the usual eq 1, in the
form u(r,λ) ) u0(r) - ln(1 + fλ(r)), where f(r) )
exp(-u�1(r)) - 1 is the Mayer f-function for the perturbation
u1(r) of the actual potential. Then, following the standard
procedure,1,5 a new perturbation series can be derived. The
series truncated at first order was applied56 to a one- and
three-dimensional model potential consisting of the hard core
plus a shoulder of constant positive magnitude, plus a weak
long-range attraction term, and an extension to mixtures was
also derived. Recently, the second-order term in the expan-
sion has been derived57 with the help of the BH local
compressibility approximation.21 It was shown57 that the
second-order theory provides satisfactory agreement with the
existing simulation data for a hard-sphere fluid in which the
diameters of the spheres are increased from σ to σ(1 + ∆)
as well as for binary mixtures’ nonadditive hard spheres with
shoulders. Higher order terms of the series become progres-
sively more and more complicated, and no reasonable
approximations are available; an exception is an effective
two-component system58 onto which a mixture consisting
of hard-sphere colloids, with radius Rc, and self-avoiding
polymer coils, with radius of gyration Rg, can be mapped;
for this effective two-component system, the third-order term
is tractable.

II.2. Variational Perturbation Theory
Another approach to obtain the thermodynamic properties

of simple fluids is the Variational perturbation theory
proposed by Mansoori and Canfield.59,60 It is a first-order
perturbation theory based on the Gibbs-Bogoliubov inequality

Taking for the reference system a fluid of hard spheres with
diameter σ, the right-hand side of the precedent equation
can be expressed in terms of the reduced quantities r* )
r/σ and F* ) σF3. Then, minimizing the right-hand side of
eq 15 with respect to σ will render the inequality close to
equality.

The variational procedure has been applied with success
to the Lennard-Jones potential and is frequently used to
obtain the thermodynamic properties of liquid metals.
However, it has been argued61-64 that the use of the hard-
sphere reference potential for fluids with soft-core potentials
may be inappropriate in perturbation theories. This is due to
the fact that a region of the phase space, available to the
actual system, is discarded in the perturbation theory because
of the impenetrability of the hard spheres. In some cases,
this drawback can be removed by using a soft-sphere

reference system.65,66 Another possibility is to introduce a
correction into the perturbation theory based on the hard-
sphere reference system. It has been shown62-64 that by
calculating by means of Monte Carlo simulation the correc-
tion within the context of the variational theory, accurate
upper and lower bounds that closely bracket the free energy
of the actual system can be obtained. Very recently, an
analytical expression for the correction in terms of the rdf
of the Lado’s self-consistent WCA theory37 has been
developed.67 The variational perturbation theory with this
analytical correction provides better accuracy than the WCA,
self-consistent WCA, and variational perturbation theory, for
soft-sphere fluids67 and liquid metals.68

Very recently, a Variational associating fluid theory,
derived on the basis of the variational perturbation theory
with a soft-sphere reference system, has been proposed to
obtain the equation of state of expanded liquid mercury.69

The theory predicts very accurately the gas-liquid coexist-
ence curve for that system.

II.3. Optimized Cluster Theory
Another diagrammatic expansion, denoted optimized clus-

ter theory (OCT), was developed by Andersen et al.70,71 As
particular cases, the OCT leads to the random phase
approximation (RPA), the optimized random phase ap-
proximation (ORPA), and the exponential approximation
(EXP), among other approximations. In all these approxima-
tions, the free energy of the fluid is expressed in terms of
the rdf of the reference fluid. The RPA, ORPA, and EXP
approximations can also be considered from the viewpoint
of integral equation theories in which the Ornstein-Zernike
equation is solved using closure conditions that involve the
correlation functions of the reference fluid. Again, these
approximations were analyzed with detail in refs 3-6, and
so we will not extend too much in their discussion.

The ORPA and other related approximations are widely
used to obtain the structure factors of simple liquid metals.
Conversely, they can be used to obtain effective interaction
potentials from measured structural data.

Regnaut72 compared the results obtained from the varia-
tional and ORPA theories for the thermodynamic properties
of liquid metals, using a hard-sphere reference system. He
concluded that the second of these theories is more suitable
to account for the influence on the energy of the softness
and the long-range oscillations of the potential and, therefore,
it is more accurate for analyzing the thermodynamic stability.
This is related to the fact that, contrarily to the ORPA, the
variational theory with the HS reference system does not
account for the deviation of the structure of the metal with
respect to that of the HS system. However, it is to be noted
that, as mentioned previously, the variational theory can be
used with reference systems other than the HS fluid. In
contrast, the ORPA in its original formulation cannot be
directly used with non-HS reference potentials. A general
formulation of the ORPA with continuous reference poten-
tials was developed by Pastore et al.73 The procedure was
subsequently applied74 to successfully obtain the thermody-
namic and structural properties of several liquid metals with
an accuracy superior to that provided by the variational
theory.

In its original form, the ORPA approximation is not well
suited for very short-ranged interactions. Quite recently, a
modification, denoted nonlinear ORPA, has been proposed,75

F e F0 + 〈Φ1〉0 ) F0 + 2πNF∫ u1(r) g0(r)r
2 dr

(15)
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giving rise to a significant improvement for these kinds of
interactions.

The applications of the ORPA and related theories reported
in the past decade include the study of the phase diagrams
of fluids in disordered porous materials76 and the thermo-
dynamic properties of colloidal suspensions.46,77

II.4. Wertheim Thermodynamic Perturbation
Theory for Association

An important development in the study of associating
fluids has been the TPT due to Wertheim,78-81 who derived
his theory by expanding the Helmholtz energy in a series of
integrals of molecular distribution functions and the associa-
tion potential. Then, the resulting complex expression is
simplified by using physical arguments, which are based on
steric incompatibility due to the potential model used, to
remove many of the integrals in the series. The conventional
starting point for simple and multipolar fluids is an expansion
in the singlet density, which however leads to cumbersome
and inefficient graph cancellation. Wertheim employed an
expansion in the fugacity, z, and developed a formulation
of statistical thermodynamics in terms of two density
variables, the usual singlet density, and the monomer density.
The two-density formalism is of strong structural similarity
to the usual formulation of the statistical thermodynamics
of simple and multipolar fluids, which is based on singlet
density alone and optimizes the exploitation of steric
incompatibility effects. One attractive feature of Wertheim’s
TPT is that the final general result is of surprising simplicity.
Wertheim applied the first-order version of his TPT (TPT1)
to the thermodynamics of hard dimers and longer hard chain
molecules.82,83

Ghonasgi and Chapman84 and independently Chang and
Sandler85 developed a dimer version of the TPT (TPTD)
using a concept similar to that of Wertheim’s TPT1 but with
the reference system represented by a fluid of dimers. The
TPTD was employed to investigate the structural and
thermodynamic properties of a monodisperse Yukawa hard-
sphere chain fluid, and it was found86 that overall the TPTD
gives more accurate predictions than the SAFT-VR (see
below). Recently, the TPTD was extended87 to treat a
polydisperse mixture of the Yukawa hard-sphere chain fluid
with chain length polydispersity, obtaining successfully the
full liquid-vapor phase diagram, including critical binodal,
cloud, and shadow curves and distribution functions of the
coexistence phases, in qualitative agreement with the cor-
responding experimental predictions for the polydisperse
mixture of polymers in a single solvent.

Gubbins and co-workers88-90 generalized Wertheim’s work
in a simple, unified formalism, to study problems ranging
from the chemical equilibrium of simple fluids to the equation
of state of mixtures of heteronuclear chains. The resulting
approach is termed statistical associating fluid theory
(SAFT), which has proven to be a powerful approach for
modeling associating and nonassociating chain fluids and
their mixtures.

In the SAFT framework, different microscopic contribu-
tions that control the macroscopic properties of the fluids
are explicitly considered. The free energy in the original
SAFT is hence written as a sum of four separate contributions
as follows:

where N is the number of molecules, Aideal is the ideal free
energy, Amono is the contribution to the free energy due to
the monomer segments, Achain is the contribution due to the
formation of bonds between monomer segments, and Aassoc

is the contribution due to association. Different versions of
the SAFT equation mainly differ in the monomer term, as
will be explained later on. The possibility of extending
Wertheim’s TPT1 to treat solid phases has only recently been
explored and employed to study the liquid-solid phase
equilibrium of chain molecules.91-93

The SAFT is perhaps the most versatile engineering
equation of state in use today. The great success of the SAFT-
type equations is due to their accuracy and applicability to
systems and properties for which other equations fail. Clearly
it is the strong statistical mechanical basis of these equations
that justifies their success. The extension to mixtures, polar
fluids, molecular liquids, electrolyte solutions, and inhomo-
geneous fluids leads to more sophisticated versions of the
theory, that will be discussed in this and other sections.
Besides the original SAFT (SAFT-HS) version, describing
molecules as chains of hard-sphere segments with long-range
dispersion forces treated at the van der Waals mean field
level, and the engineering version HR-SAFT,94-96 which
extends the original SAFT to many real, molecular, and
macromolecular fluids and their mixtures and represents a
useful, predictive correlation for these fluids, we also have
other versions, such as the so-called soft-SAFT97-100 and the
SAFT-VR.28,101 In the soft-SAFT the monomer term is a
spherical LJ fluid which accounts for both the repulsive and
attractive interactions of the monomers forming the chain.
The SAFT-VR describes chain molecules formed by hard-
core monomers with attractive potentials of variable range
and significantly improves upon the van der Waals mean
field treatment used in the SAFT-HS approach by providing
an additional parameter characterizing the range of the
attractive part of the potential. Further modifications and
developments of the SAFT-VR have been developed fruit-
fully and lead to, to name but a few, the group-contribution
SAFT,102 termed as SAFT-γ, the SAFT-VRE,103 dealing with
strong-electrolyte solutions, the SAFT1-RPM104,105 and
SAFT2-RPM,106,107 for general electrolyte solutions, and the
SAFT-VR+D,108-110 for dipolar fluids and dipolar associating
fluids.

The SAFT-VRE models the water molecules as hard
spheres with four attractive short-range sites to describe the
hydrogen-bonding association, the salt molecules are mod-
eled with two hard spheres of different size which describe
the anion and cation, respectively, the ion-ion interactions
are included at the simplest restricted primitive level in the
form provided by the mean spherical approximation, while
the long-range water-water and ion-water attractive inter-
actions are modeled as square-well dispersion interactions
in the spirit of the SAFT-VR.28,101 Due to the incorporation
of an explicit description of the solvent, the experimental
vapor pressures and densities are very well described by the
SAFT-VRE approach by using only one transferable fitted
parameterper ion.TheSAFT1-RPMcouples theSAFT-VR28,101

with the restricted primitive model and can represent both
single-salt and multiple-salt solutions, including their activity
coefficients, osmotic coefficients, vapor pressures, and densi-
ties. In the SAFT1-RPM approach, each salt consists of two

A
NkT

) Aideal

NkT
+ Amono

NkT
+ Achain

NkT
+ Aassoc

NkT
(16)
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distinct segments, the cation and the anion, and is character-
ized by one parameter, namely the salt hydrated diameter,
and each ion is characterized by three parameters, namely
the ion volume, energy, and square-well width. However,
the application of the SAFT1-RPM approach is limited to
monovalent ions due to a limited range of the square-well
width parameter needed to estimate the effective reduced
density for use in the calculation of the monomer term. By
relaxing the range of the square-well width parameter, the
SAFT1-RPM can be extended to multivalent ions: single salt
+ water solutions and multiple-salt solutions including
seawater/brine. The resulting SAFT2-RPM, which differs
from the SAFT1-RPM by a new dispersion-term approxima-
tion and a new set of salt and ion parameters values, has the
same parameters as those used in the SAFT1-RPM. The
SAFT-VR+D explicitly accounts for the position and
orientation of the dipole moment and incorporates its effect
on the structure of the fluid through the use of a dipolar
square-well reference fluid treated by a generalized mean
spherical approximation (GMSA). It has been shown that
the phase behavior and thermodynamic properties of a dipolar
square well monomer, chain fluids, in which one or more
segments are dipolar, and dipolar associating square-well
monomers with one, two, and four association sites may be
described satisfactorily by the SAFT-VR+D.

The SAFT-γ102 is a heteronuclear generalization of the
SAFT-VR and can tackle heteronuclear molecules which are
formed from fused segments of different types. The param-
eters of various functional groups, namely the group size,
dispersive energy and range, and shape factor, together with
the unlike energy parameters between different groups, are
adjusted to give an optimal description of the vapor-liquid
equilibrium for an extensive selection of pure compounds
comprising the CH3, CH2, CH3CH, ACH, ACCH2, CH2d,
CHd, and -OH groups. The main advantage is that the
binary interaction parameters between groups can be obtained
directly from the pure components alone. The predictive
capability of the SAFT-γ is demonstrated by calculating the
vapor liquid equilibrium of some larger compounds compris-
ing those groups which are not included in the optimization
database.

Although the traditional simple cubic EOSs111 represent
the thermodynamic properties of pure fluids and fluid
mixtures accurately, these equations do not consider the real
size and shape differences between the pure components and
are not thermodynamically self-consistent. As a result, the
predictive capabilities of these equations are limited. The
success of the SAFT in complex fluids may lie in the
applicability of its different extensions and variants to the
calculation of bulk PVT and phase behavior properties112-115

and interfacial properties,116-118 of a wide range of industri-
ally important systems, such as, for example, simple
alkanes,28,119,120 simple polymers and their mixtures,113,121-123

perfluoroalkanes,124,125 hydrogen fluoride,126 boron triflou-
ride,127 water,128,129 refrigerant systems,130 carbon dioxide,131,132

electrolyte solutions,103-107,133-135 surfactant systems,136 etc.

It should be pointed out that the Wertheim’s theory also
provides a promising framework for treating the thermody-
namics of a wide range of self-assembling systems.137 On
the other hand, a TPT for association with bond cooperativity
was derived from a more intuitive but less rigorous
method.138 It has been claimed138 that the method is very
generally applicable and can be used to rederive Wertheim’s

perturbation theory for dimerization78,79 and for chain
formation.80,81

It is to be noted that Wertheim’s theory also comprises
the multidensity Ornstein-Zernike integral equation, which
has played an important role in the investigation of homo-
geneous and inhomogeneous chemically associating fluids.139,140

However, we will not give further discussion because the
field is out of the domain of the perturbation approach.

A general problem of the TPT for atomic fluids, i.e.
overprediction of the critical temperatures of pure compo-
nents, is also not exceptional to the TPT1 and the above-
mentioned related theories. In chain molecule solutions, this
undesirable character even becomes more acute when the
critical temperature is measured relative to that of the more
volatile component; and what is more, the magnitude of the
problem is even not weakened simply by adjusting the
parameters of the pure component, perhaps because the
adjusting induces the mixture to be far more asymmetrical
than it actually is. A better choice to go beyond the classical
approximation is to incorporate the renormalization group
treatment into the TPT framework. Such an endeavor has
been performed in atomic fluid TPT and the SAFT formalism
(see below).

II.5. Renormalization Group Perturbation Theory
Similarly to all empirical equations of state (EOS), all the

EOSs derived from various perturbation expansions are also
essentially mean field equations that fail to reproduce the
nonanalytical singular behavior of fluids in the critical region
caused by long-scale fluctuations in density. During the last
two decades, many efforts have been made to develop a
global EOS able to reproduce the classical van der Waals-
like limit far away from the critical point, reducing to the
ideal-gas limit at low densities, and transform it into a
nonanalytical scaled EOS as the critical point is approached.
The theoretical models most influential are probably the
hierarchical reference theory (HRT) developed by Parola and
co-workers,141 the global renormalization group (RG) pro-
cedure proposed by White and co-workers,142 the crossover
approach to global critical phenomena advanced by Chen at
al.,143,144 and a phenomenological approach by Kiselev et
al.145 As the HRT principally falls into the field of the
distribution function formalism, we will not refer to it in
the analysis that follows.

Crossover Approach to Global Critical Phenomena

As the validity of the asymptotic power law is restricted
to a very small region near the critical point, and the classical
EOSs completely fail close to the critical point, the crossover
approach dealing with nonasymptotic behavior of fluids,
including the crossover from Ising behavior in the immediate
vicinity of the critical point to classical behavior far away
from the critical point, is essential for formulating an EOS
accurately describing the behavior of fluids over the entire
thermodynamic surface. Such an approach has been devel-
oped by Chen at al.,143,144 Jin et al.,146 and Kiselev et al.145,147

by following the work of Nicoll et al.148 The crossover
approach is based on the Landau-Ginzburg-Wilson theory
of critical fluctuations and leads to a renormalized classical
Landau expansion to take into account the effects of the long-
scale fluctuation in density. It has been pointed out143 that
the crossover procedure based on a two-term Landau
expansion is only adequate to obtain an asymptotic crossover

Perturbation Approach in Fluid and Fluid-Related Theories Chemical Reviews, 2009, Vol. 109, No. 6 2835



model, i.e. the crossover from asymptotic singular critical
behavior to asymptotic classical critical behavior. To repro-
duce the actual classical thermodynamic behavior observed
in fluids, one needs to consider a more complete classical
Landau expansion with more expansion terms. Reference 144
extended the CAS procedure so that it can be used in
conjunction with a six-term classical Landau expansion, and
the resulting nonasymptotic crossover renormalized free
energy model was shown to compare favorably with
experimental thermodynamic-property data for carbon di-
oxide, steam, and ethane. Other solutions to the asymptotic
crossover model were also obtained by Belyakov and
Kiselev149 on the basis of an expansion in terms of ε ) 4 -
d, where d is the dimensionality, and by Bagnuls and
Bervillier150 from a 3-dimensional field theory. In ref 151
mathematical details are reported for several particular
theoretical crossover models, which correspond to different
approximations for the renormalization functions occurring
in a differential equation for the Helmholtz free energy
density resulting from the RG theory of critical phenomena.

Although these crossover equations of state give a very
accurate representation of the thermodynamic properties of
fluids and fluid mixtures in a wide region around the critical
point, in the ideal-gas limit they do not satisfy the ideal gas
equation of state and, therefore, they cannot be extrapolated
to low densities. This undesirable drawback has been
overcome in a global crossover EOS152 which incorporates
the classical van der Waals behavior (including the ideal-
gas limit and the high density hard sphere limit) far away
from the critical point and singular behavior near the critical
point. This equation was obtained from a transformation
derived from the renormalization-group theory of critical
fluctuations to a closed-form classical EOS. As shown by
Kiselev and co-workers,152,153 the use of an universal
crossover function in this global crossover procedure not only
yields a better description of the PVT and VLE properties
of pure fluids and binary mixtures in the critical region but
also improves the representation of the thermodynamic
surface of dense fluids in general.

Kiselev’s global crossover procedure152 has been applied
to simpler versions of the SAFT EOS, giving rise to
crossover SAFT EOSs in which the expressions of HR-SAFT
have been used. The comparison of these equations with
experimental PVT and VLE data for normal alkanes,154 polar,
and associating fluids155 shows a noticeable improvement
over the original SAFT. Kiselev’s crossover procedure has
also been used in combination with the more sophisticated
SAFT-VR. The resulting crossover EOS, the SAFT-VRX,156

was shown to be very accurate in the prediction of PVT and
phase behavior for both nonassociating and associating fluids
and mixtures.

Global Renormalization Group Procedure

White proposed a numerical procedure142 which facilitates
the development of a general renormalization group theory
for real fluids capable of predicting their thermodynamic
properties globally, including both at the critical point and
away from the critical point, from the specification solely
of the microscopic interactions between the constituent
molecules. The global RG procedure142,157 starts from any
mean field expression for the Helmholtz free energy density
and transforms it to the final one by including contributions
from the attractive tail that correspond to density fluctuations
of increasingly longer wavelengths. These contributions are

evaluated approximately by using the phase space cell
approximation of Wilson.158 Unlike the RG procedure applied
to the Ising and lattice gas models, the molecules in the fluid
are considered capable of moving freely within the fluid
rather than being restricted to particular lattice sites. In this
context, the phase space cell approximation consists in
treating fluctuations between two RG steps as wave packets,
each of them nonvanishing and varying in amplitude, in a
limited subvolume within which the fluctuations of longer
wavelengths have approximately constant amplitude. Massive
sample calculations159 indicate that, after the first few
iterations of the RG step, the contributions resulting from
successively longer wavelength fluctuations decrease rapidly
in size so that, in most cases, negligible contributions result
after six iterations. The phase space cell approximation
includes several parameters142,157-159 whose values the global
RG procedure, at its present stage of development, cannot
determine a priori. As a result, the use of the global RG
procedure to make predictions requires the specification of
at least a little more than the intermolecular potential, e.g.,
specification of the critical point temperature, density, and
pressure. It has been attempted160 to use the global RG
procedure to find the critical point parameters of the SW
fluid by using simulation results for the coexisting gas and
liquid densities not too close to the critical point; however,
the values obtained differed substantially from estimates
made previously from Monte Carlo simulations performed
over similar ranges of density and temperature in combina-
tion with extrapolation methods. The theoretical formalism
due to White and co-workers has been further developed.
Thus, it has been extended to a larger region around the
critical point,161 to fluid mixtures,162 to improve cubic EOSs
near the critical point,163 and to chain fluids.164 Recently, the
global RG procedure has been applied165 to investigate
multiple critical points for an isotropic pair potential with a
repulsive soft core situated between the hard sphere repulsion
and an attractive tail, but the theoretical results have not been
compared to computer simulation results.

Merging the renormalization group concept with the liquid
state theories is presently the only way to make the latter go
beyond the mean field approximation. The works discussed
above are undoubtedly leadings in this regard; further
combination of the renormalization group with other kinds
of the perturbation approach will be the focus of future
research. In addition, the existence of several unknown
parameters makes the renormalization group perturbation
approach depart somewhat from the first principles character.

II.6. Ginzburg-Landau Theory
Ginzburg and Landau proposed166 in the 1930s a phenom-

enological mean-field approach to phase transitions. Its
crucial hypothesis is that in the vicinity of the critical point
the free energy functional can be written in powers of the
order parameter of the problem. Although the GL theory was
initially conceived as a phenomenological description, a
conceptual connection between the GL expansion coefficients
and microscopic interaction parameters has been established.

Quite recently, there have been formulated167 the basic
principles of a generalized lattice model of multicomponent
condensed systems, and a Helmholtz free energy expression
that leads to a functional in a form similar to the “purely
phenomenological” GL functional has been derived, with the
advantage that all the parameters in the former have a simple
physical interpretation and are well-defined, and the func-
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tional is not restricted on the finite number of power terms.
Considering that the GL functional has been extensively used
to model phase transitions in superconductors, alloys, su-
perfluids, and crystalline solids, as well as in dynamic models
of the nucleation and growth of metastable phases, and in
spinodal decomposition and ordering from an initially
unstable phase,168 it would be of value to determine self-
consistently the parameters characterizing this functional in
terms of the microscopic variables of the underlying interac-
tion potential.

It has been shown169 that the parameters can be extracted
with the help of Monte Carlo simulation from a multivariate
distribution of energies and particle densities; the dependence
of these parameters on temperature and chemical potential
can be obtained by reweighing multivariate histograms
compiled in a single thermodynamic state. In this way, a
link is established between the atomistic and mesoscopic
length scales.

Last but not least, the GL functional expression also can
be derived170 using classical DFT as a gradient expansion in
terms of a set of order parameters; this results in a true long-
wavelength approximation in which microscopic details are
subsumed into the various coefficients of the gradient
expansion. These coefficients can be calculated from mi-
croscopic information, such as moments of the n-body direct
correlation function. An important limitation of this func-
tional is concerned with the divergence of higher order
moments in the case of interactions that decay algebraically.
A theoretical way to develop the GL functional for such long-
range potentials is to follow the procedure used in TPT by
separating the potential into a short-range part and a long-
range part and tackling the latter by the mean field ap-
proximation. Another limitation is that the free energy
functional is unstable with respect to very sharp interfaces;
such rapid variations in the order parameters overstep the
scope of the GL approach. This functional has been used to
discuss surface melting, the nucleation of freezing in a bulk
fluid,171 solid-solid phase transitions,172 the liquid-fcc solid
planar interface, the properties of small solid clusters
nucleating within a liquid,173 and the morphology of spinodal
decompositions in mixtures of a liquid crystal and a colloidal
particle.174 The GL theory is also ready for investigation of
the weak anisotropy of the interfacial free energy γ for the
crystal-melt interface;175 in such a GL scheme, the order
parameters are the amplitudes of density waves correspond-
ing to the principal reciprocal lattice vectors. It has been
shown that the GL theory yields predictions of γ and its
anisotropy in reasonably good agreement with MD simula-
tions for Fe. Dynamics of highly viscous liquids has been
investigated by a time-dependent GL equation176 of the
nonconserved type taking account of the molecular orien-
tational fields, the stress tensor fields, and the potential energy
density fields; it has been argued that the simple model is
consistent with several available experimental facts. For
progress on the numerical aspect of the nonconserved order
parameter GL equation, the readers are referred to ref 177
and references therein.

The biggest merit of the GL approach is perhaps its
serviceability in actual complex systems; this will be
expatiated upon in the next sections. It should be pointed
out that the extensive applicability of the GL approach,
particularly to complex systems, comes from its phenom-
enological character. As a result, the GL approach is
essentially not a first principles theory. The more microscopic

intermolecular information is implanted into the mesoscopic
description, the more quality going along with the first
principles description will be imparted to the LG approach,
but there should be a compromise between the complexity
of the first principles in calculation and the universality of
phenomenological description in application.

II.7. Numerical Ornstein-Zernike Integral
Equation Thermodynamic Perturbation Theory

Recently, one of the present authors advanced178 a new
version of TPT which is based on a coupling parameter
expansion (CPE) like that in eq 2, that can be rewritten in
the form

with

where f is the free energy per particle, f0 is the free energy
per particle in the reference system with potential u0, fn is
the perturbative contribution of order n to f, and g(r,λ) is
the radial distribution function of an imaginary fluid with a
pair potential of the form in eq 1.

Unlike the above-mentioned high temperature series
expansion, the n-th term in Zhou’s expansion depends only
on the (n - 1)-th derivative of the rdf g(r,λ) of the fluid
with potential (eq 1) evaluated at λ ) 0. Hence, Zhou was
able to formulate the third-order178,179 and fifth-order ver-
sions180 of the expansion in eq 17 by numerical derivation
of g(r,λ). It was shown178,181 that the second-order term thus
obtained greatly improves the Barker-Henderson MCA
result (eq 13). Incorporation of higher-order terms into
expansion 17 from the Zhou procedure greatly improves the
accuracy of the results;180,182,183 the resulting third-order TPT
obviously overperforms the second-order MCA-TPT.182 The
outstanding performance of the third-order TPT continues
even for derivative properties, such as the constant volume
excess heat capacity.184 Instead, other existing TPT versions
provide only qualitative accuracy, at best, for derivative
properties. The third-order TPT generally also shows182

greater accuracy than other liquid state theories, including
the well-known self-consistent Ornstein-Zernike approxima-
tion (SCOZA) and the HRT. In particular, whereas both the
SCOZA and the HRT will run into numerical trouble for
short-ranged potential, the Zhou procedure is free from any
numerical drawback. The fifth-order version of the theory
was also implemented180 and was found to be a little more
accurate than the third-order version. In ref,180 a numerical
procedure was advanced which, in the framework of the DFT
formalism, allows an extension of the uniform TPT to
nonuniform fluid situations. In the numerical procedure, a
simple analytical approximation for the bulk second-order
direct correlation function (DCF) was proposed. As a result,
the numerical procedure does not require a numerical solution
of the Ornstein-Zernike (OZ) equation.

In Zhou’s version, although the expansion parameter λ is
set to be 1 in the final expression for the full potential u(r),
the perturbative terms are still proportional to the value of
�, and therefore, Zhou’s TPT version is also more appropriate

�f ) �f0 + ∑
n)1

∝

�fn (17)

fn ) 2πF
n! ∫ u1(r)

∂
n-1g(r, λ)

∂λn-1 |λ)0r
2 dr (18)
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for high temperatures than for low temperatures. In fact, for
sufficiently low temperatures, neither Zwanzig’s nor Zhou’s
perturbation expansions will converge at all. An illustrative
example of the divergent behavior occurring at extremely
low temperature may be found in ref 180, where an unusual
sharp increase in the absolute value of the derivative
∂n-1g(r,λ)/∂λn-1|λ)0, involved in eq 18, for n ) 4 and 5, was
reported. In fact, the low temperature problem is inherent to
all liquid state theories. Recently, one of the present authors
has tried185,186 a nonhard sphere TPT within the framework
of the CPE by including part of the tail of the potential into
the reference part. Extensive calculations indicate that the
nonhard sphere TPT based on the CPE displays excellent
performance even for situations of extremely short potential
range and hence extremely low temperature, whereas various
integral equation theories and the second-order MCA-TPT
fail completely under these extreme situations.

II.8. Other Perturbation Theories for Simple
Systems

The γ-Expansion

For potentials with short-ranged repulsive and long-ranged
weakly attractive interactions, Hemmer187 developed the so-
called γ-expansion, further extended by Lebowitz et al.188

They consider intermolecular potentials of the form

where γ-1 is a measure of the range of the attractive
interactions. For a potential of this form, Hemmer develops
a generalized cluster expansion which leads to the expression
of the excess free energy and the radial distribution function
as a power series of γ. The terms in the series can be obtained
from the rdf of the reference system. The γ-expansion is
useful for the study of systems with Coulombian interactions,
but it is not useful for fluids without long-ranged interactions.
Detailed and excellent accounts of the γ-expansion can be
found in refs 3-6 so that there is no need here for going
further in its analysis.

The Solvation Approximation

Very recently, Adib189 has developed a simple procedure
to obtain the first-order perturbative contribution g1(r) to the
rdf of fluids with discrete potentials. The author expresses
this quantity in the form

where ∆g0(r′|r) ) g0(r′|r) - g0(r′) is the change in the local
structure of the reference fluid at position r′ from a given
particle, due to the presence of another particle at position r
from the same particle. To determine this quantity, the total
perturbation energy is split into two contributions, one due
to the particles 1 and 2, considered as the “solute” particles,
and the other due to the remaining particles, considered as
the “solvent” particles. When particles 1 and 2 are close
enough, on switching on their contributions, considerable
structural changes are induced in the solvent. When the
quantity ∆g0(r′|r) is obtained from simulation in the reference
HS system, the values of g1(r) obtained from the approximate
eq 20, the solvation approximation, are in satisfactory

agreement with the exact values of g1(r) obtained from
simulation for SW, double SW, and LJ fluids at high
densities. In the same paper, a simple and reasonably accurate
procedure to obtain analytically g1(r) for step potentials based
on excluded volume effects is proposed.

II.9. Equations of State and Radial Distribution
Functions of the Reference Systems

The preceding theories, and others described below, require
the knowledge of the rdf g0(r) of the reference system and
the corresponding equation of state.

When the reference system is the hard-sphere fluid, a
frequent choice for the rdf is the analytical expression arising
from the Percus-Yevick theory.190,191 However, as this
expression is not sufficiently accurate, frequent use is made
of the Verlet-Weis correction,35 but there are available other
analytical and very accurate expressions, such as the rational
function approximation.192,193

Regarding the equation of state of the hard-sphere refer-
ence fluid, the most frequently used is the well-known
Carnahan-Starling equation,194 which is very simple and
sufficiently accurate for most purposes.

In order to make easier the calculations in practical
applications of the perturbation theories, several parametri-
zations of the rdf of the HS fluid have been proposed quite
recently195-197 based on the Percus-Yevick analytical solu-
tion. These results can be easily used to construct analytical
expressions for the thermodynamic properties of fluids with
different potential functions. Much earlier, simple param-
etrizations were proposed198 for the integrals arising in
perturbation theory in several kinds of potential interactions,
based on the first few terms in the density expansion of the
HS rdf and simulation data. These parametrizations were used
recently in ref 55 to construct an analytical first-order
perturbation theory for inverse-power and LJ-type potentials.

For some liquids, as in the case of liquid metals, other
choices for the reference fluid, instead of the HS fluid, such
as the soft-sphere fluid, are preferable. In this case, we need
to resort to equations of state and structural functions for
the reference fluid obtained from simulation data or from
integral equation theory. However, this requires a greater
computational effort than when using the HS reference
system. An alternative strategy was developed by Ross199

consisting in using a soft-sphere reference fluid whose free
energy is determined using the rdf of the HS fluid.

For the equation of state of the hard-sphere reference solid,
the Hall equation200 is generally used. For the averaged rdf
of the reference solid, several parametrizations based on the
simulation data are available for the fcc47,48,50,201,202 as well
as for hcp49,50 hard-sphere solids. Very recently, one of us,43

extending the procedure outlined in ref 202, developed
expressions for the rdf for the hard-sphere bcc and sc phases.
It is to be noted that the latter two phases are unstable for
the hard-sphere solid, so that the corresponding rdf cannot
be obtained from simulations.

II.10. Perturbation Theories for Simple Fluid
Mixtures

Several of the perturbation theories described for simple
fluids have been applied also to simple fluids mixtures. For
earlier reviews on the first achievements in the field, one
can refer to refs 203 and 204. Now, instead of the interaction
potential in eq 1, we will have for the interaction between

u(r) ) u0(r) - γ3�(γr) (19)

g1(r) ≈ -�g0(r)[u(r) + F∫ dr′ u(r') ∆g0(r′ |r)]
(20)
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particles i and j, which may belong to the same or different
species,

The reference system may be a monodisperse fluid or a
multicomponent mixture. In the first case, the interaction
potential uij

0(r) ) u0(r) for every i and j. If the actual
interaction potential uij(r) for the mixture has a spherical hard
core, the obvious choice for the reference system will be
the hard-sphere fluid in the first case and a hard-sphere fluid
mixture in the second case. In any case, the λ-expansion in
eq 2 continues to be valid if we include within the term F0

the contribution NkTixi ln xi of an ideal mixture, where xi is
the mole fraction of component i. The first-order contribution
to the free energy is

where σij is the center to center distance for spheres i and j
at contact in the HS reference system and δij is an analogous
effective distance in the actual system. In the case that the
reference system is a monodisperse hard-sphere fluid, gij

0(r)
) g0(r), the rdf of the HS fluid, and σ ) σij, the diameter of
the spheres in the reference fluid, for every i and j, then
choosing σ ) ∑ixixjδij, the second term in eq 22 vanishes.
In the case that the reference system is a hard-sphere fluid
mixture, gij

0(r) can be obtained from the Percus-Yevick
solution for these mixtures.205 For the equation of state, one
can use the so-called Boublı́k-Mansoori-Carnahan-
Starling-Leland (BMCSL) equation.206,207 The perturbation
series was carried out to second order for hard-core potential
models in several ways208,209 directly related to the BH
procedures for pure fluids, with satisfactory results.

The theory was also extended to mixtures of Lennard-
Jones molecules210 by introducing an effective hard-sphere
diameter for the interaction between particles of species i
and j in a similar way as done previously for pure LJ fluids.
However, the results were not satisfactory for these mix-
tures.203 More recently, the effects of the nonadditivity of
the perturbative tails, the size ratio, and the maximum depth
ratio on the thermodynamic properties of mixing in LJ
mixtures have been investigated211 by means of first-order
perturbation theory. The application of first-order perturbation
theory to simple fluid mixtures in the last years includes the
study of reentrant miscibility in binary mixtures of spherical
molecules with short-ranged SW interactions between unlike
species212 and the calculation of the thermodynamic proper-
ties of He-H2 mixtures.213

The WCA theory also was extended to simple fluid
mixtures,214 using a hard-sphere mixture as the reference
system, with results satisfactory, on the whole, for the total
thermodynamic properties but only moderately satisfactory
for the excess properties, which are very sensitive to the
accuracy of a theory. Further improvements have been
proposed,215-217 on the basis of different choices for the
reference and perturbation potentials, or by using better
choices for the diameters of the hard spheres of the reference
system and for the equation of state of the reference hard-
sphere mixture.218 In the latter reference, a new criterion was
used to determine the reference diameters in the mixture in

such a way that the first-order term in the blip expansion of
the excess free energy of the reference mixture around that
of an additive hard-sphere mixture vanishes exactly. More-
over, to improve the accuracy of the Percus-Yevick radial
distribution functions of the HS reference mixture, the
Ornstein-Zernike equation was solved with distribution
functions including a parameter that was determined from
the condition that the EOS of the HS mixture equals that
given by the BMCSL equation. The importance of properly
treating the first-order term in the blip expansion used in
the WCA theory was discussed in ref 219. The adequacy of
different mixing rules to predict Henry constants in real
mixtures of simple molecules by means of a WCA-type
theory was tested in ref 220.

Another improvement consisted221 in using a nonadditive
hard-sphere reference system (NAHS), which is particularly
appropriate for strongly nonadditive systems, such as certain
molten alloys. The thermodynamic properties of the NAHS
fluid in turn can be obtained from a recently proposed222

perturbation theory which uses as the reference system an
additive hard-sphere fluid mixture.

In some situations, as in the case of colloidal dispersions,
some degree of polydispersity may be present. An expression
for the free energy of a polydisperse hard-sphere mixture
has been obtained223 as a perturbative expansion in power
series of the degree of polydispersity, derived from the
BMCSL expression for the free energy.

On the other hand, the equation of state for monocompo-
nent solids derived in ref 51 on the basis of the WCA theory
was used quite recently,224 in combination with an appropriate
perturbation theory for the fluid, to successfully correlate the
solid-liquid equilibria of argon/krypton and argon/methane
mixtures as well as the solid-solid equilibria and the eutectic
temperature of argon/methane mixtures.

The variational perturbation theory is another pure fluid
theory that is readily extended to mixtures and provides
satisfactory results for LJ mixtures.225-228 This theory has
been applied recently229 to obtain analytical expressions for
the thermodynamic properties of He-H2 mixtures on the
basis on an analytical parametrization of the rdf for the
reference HS fluid.

Another perturbative approach for mixtures is related to
the conformal solution theory. This theory applies to mixtures
whose components interact with each other by means of
potentials of the form

Taking as the reference fluid an ideal mixture with potential
conformal with that of eq 23 with parameters εx and σx, and
expanding the free energy of the mixture around the reference
ideal solution in terms of suitable combinations of the
parameters εij and σij raised to arbitrary powers, a family of
second-order perturbation theories was obtained.230 By
properly choosing the reference fluid parameters εx and σx,
the first-order term in the expansion vanishes, and neglecting
higher-order terms, a zero-order perturbation theory for
conformal mixtures results that, in particular, reduces to the
van der Waals one-fluid theory (vdW1).231 More details on
these theories can be found in ref 203. Further refinements
and applications of the vdW1 and other one-fluid theories
can be found in refs 232-236.

The vdW1 theory continues to be a very popular one, as
is computationally very simple and for some mixtures

uij(r, λ) ) uij
0(r) + λuij

1(r) (21)

F1

NkT
) 2πF∑

i
∑
j*i

xixj ∫0

∞
uij

1(r) gij
0(r)r2 dr -

2πF∑
i

∑
j*i

xixjdij
2gij

0(σij)(σij - δij) (22)

uij(r) ) εij f ( r
σij

) (23)
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provides an accuracy comparable with that of other more
complex perturbation theories. In particular, the vdW1 theory
has been extensively used to calculate the monomer contri-
bution within the statistical association fluid theory for
complex fluids.98,110,121,124,237

A hybrid approach was developed in ref 238 for mixtures
of fluids with discrete potential models. The procedure
consists in using a hard-sphere fluid mixture for the reference
fluid and a vdW1 approximation for the perturbation, whose
contribution was determined from a parametrization previ-
ously developed27 on the basis of the HTSE.

We will finish this subsection by mentioning the effective
one-component fluid approach for colloidal suspensions. In
this approach, the effect of the solvent is treated as an
effective interaction acting between the solute particles (see
ref 239 and references therein for more detailed explana-
tions), and the thermodynamic properties and phase equilibria
of the solute can be obtained from any suitable perturbation
theory. The approach is commonly used in very asymmetric
mixtures of hard spheres. Thus, first-order perturbation theory
was used240 to study the phase diagram in such kinds of
mixtures considering different possible choices for the
depletion potential between the large spheres due to the
presence of the smaller ones. The theory predicted a complex
phase behavior, including solid-fluid and fluid-fluid de-
mixing and isostructural solid-solid transitions. In ref 241
the effective one-fluid approximation, in combination with
a λ-integration obtained from simulation data, was used to
obtain the phase diagram of asymmetric binary mixtures of
hard-spheres with different diameter ratios. A similar pro-
cedure was used in ref 242 to analyze the phase behavior of
colloid polymer mixtures using the Asakura-Oosawa deple-
tion potential for the effective one-component fluid. The
effective one-fluid approximation in combination with second-
order BH perturbation theory was used243 to study the phase
behavior of star-polymer-colloid mixtures. Frequently, the
depletion interactions in colloidal suspensions are modeled
by a short-range potential such as the hard-core Yukawa
potential. The reliability of this approximation to determine
the solid-fluid transition was analyzed recently by one of
us,244 using a first-order perturbation theory for the solid and
a semiempirical analytical perturbation theory for the fluid.245

It was found that, to obtain the phase diagram, different short-
ranged potential models can be replaced by each other upon
the condition that they give the same values of the second
virial coefficient.

The reliability of the effective one-component description
of realistic colloidal and polymeric suspensions was analyzed
in ref 246. It was shown that, contrarily to the cases of
ordinary fluids, because of the effect of nonadditivity of the
hard-core diameters for unlike interactions, in many cases
the attractive depletion forces may be dominant for deter-
mining the structure and phase behavior. In fact, using a first-
order perturbation theory in combination with an effective
one-component approach for HS binary mixtures with
moderate diameter ratios, it was concluded247 that the
presence of moderate nonadditivity may lead to the presence
of a fluid-fluid critical point in the stable region of the phase
diagram that, in absence of nonadditivity, will fall into the
metastable region. On the other hand, the soft-core effective
interactions between polymers in solution may lead to mean
field behavior fluid. Therefore, one must be careful in
determining the effective depletion potential and the choice

of the theory to apply. Moreover, in real suspensions,
attractive forces, in addition to the depletion forces, may be
present.

The effect of the presence of solute-solvent and
solvent-solvent short-range attractive forces was shown248

to give rise to important changes in the phase diagram of
the effective one-component fluid as compared to the case
of purely hard-core interactions. The effective one-fluid
approach was used together with the WCA perturbation
theory to determine the thermodynamic properties and the
phase diagram of a charged colloidal dispersion.249

The effective one-component approximation, and even
conventional perturbation theory, may break down in
colloid-polymer mixtures. In a recent paper,58 a mixture
consisting of hard-sphere colloids, with radius Rc, and self-
avoiding polymer coils, with radius of gyration Rg, was
considered. It was found that the effective one-component
approach is reasonable in the colloidal regime, Rc/Rg > 1,
provided that the ratio is large enough. In the protein regime,
Rc/Rg < 1, the one-component picture is no longer applicable
because of the importance of many-body interactions as
compared with the effective pair interactions.58 Instead, the
system can be mapped onto an effective two-component
system58 with two reference fluids, one for the HS-HS
interaction and the other for the polymer-polymer interaction
considering the polymer coils as soft colloids, plus an
effective HS-polymer interaction. Then a perturbation theory
like that outlined in subsection II.1 in combination with the
effective two-component system was shown to be applicable
to any value of the ratio Rc/Rg.

II.11. The Virial Expansion
The virial expansion of the compressibility factor Z )

pV/NkT

where Bn is the n-th virial coefficient and F ) N/V is the
number density, may be considered as a perturbative expan-
sion of the equation of state using the ideal gas as the
reference system and the density as the parameter. As is well-
known, the virial coefficients can be conveniently expressed
in terms of the so-called cluster diagrams in a way which is
increasingly complex with increasing n. The essentials of
the calculation of the first few virial coefficients can be found
in any textbook on Statistical Physics, so that there is no
need to give here further details. We will restrict ourselves
to give a quite detailed account of the state of the art of the
theoretical calculation of the virial coefficients of fluids with
model potentials. For convenience, we will group the
different kinds of fluids into three categories, namely, pure
hard-body (HB) fluids, hard-body fluid mixtures, and other
kinds of pure fluids and mixtures.

Virial Coefficients for Pure Hard-Body Fluids

The first few virial coefficients have been determined for
many hard-body fluids. The interested reader is addressed
to ref 250 for an earlier review on the subject. The simplest
HB fluid is the HS fluid, for which the virial coefficients Bn

up to n ) 4 are known exactly, whereas for n g 5 they need
to be determined numerically from a Monte Carlo procedure.
At present, the virial coefficients Bn for 5 e n e 10 are

Z ) 1 + ∑
n)2

∞

BnF
n-1 (24)
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known with great accuracy.251,252 Frequently, the virial series
of the HS fluid is used to obtain a closed form of the equation
of state. To this end, Padé approximants are frequently used.
These approximants are often also used to predict the virial
coefficients beyond those “exactly” known. Recent estimates
obtained in this way for the virial coefficients of the HS fluid
for n > 10 can be found in refs 251-253.

For nonspherical convex hard-body fluids, only the second
virial coefficients can be determined analytically as a function
of geometrical parameters (see ref 250 for the calculation
of B2 for a number of these geometries). The exact second
virial coefficient for hard ellipsoidal fluids (whose convex
molecules have three distinct principal axes) was determined
quite recently.254 For nonconvex hard-body molecular fluids,
in general, even the second virial coefficient cannot be
calculated exactly but for a few cases. For many HB fluids,
either having convex or nonconvex molecules, several virial
coefficients Bn, in general with n e 5, have been obtained
numerically from a Monte Carlo procedure (see the cited
ref 250 and references therein for a review of the achieve-
ments in this field before 1986). More recently, an exact
analytical expression has been obtained255 for the second
virial coefficient of linear homonuclear rigid chains consisting
of hard spheres. The virial coefficients for 3 e n e 5 were
determined for hard prolate256 and oblate257 spherocylinders
with different geometries. The values of B3 to B5 for prolate
and oblate hard ellipsoids of revolution with different
geometries were reported in ref 258, those from B3 to B7

were reported in ref 259, and those for hard ellipsoidal
molecules were reported in ref 260 from B3 to B5. For cut
spheres with several aspect ratios, the values of B2 to B5 are
available in ref 261. The virial coefficients of rigid linear
homonuclear molecules consisting of different numbers of
equal spheres and with different center-to-center distances
have been reported by different authors262-265 for n e 5. For
rigid diatomic and triatomic linear heteronuclear molecules
as well as for rigid nonlinear molecules that are either
homonuclear or heteronuclear, these virial coefficients have
also been determined for different geometries.262 The virial
coefficients B2 to B6 are available for prolate and oblate hard
Gaussian overlap fluids.266,267 Quite recently, the virial
coefficients B6 to B8 for hard ellipsoids of revolution, hard
spherocylinders, and cut spheres with different geometries
have been reported.268 These models can be used as reference
systems in perturbation theories for models of real molecular
fluids.

For a hard core model of carbon tetrachloride, B2 to B4

have been calculated.269 B2 has been determined270 for hard
tetrahedral molecules with different geometries. The virial
coefficients B2 to B5 have also been determined271 for several
pseudohard reference models (fused hard-sphere models with
embedded sites of different kinds) of water, methanol, and
ammonia.

For hard models of polyatomic molecules having different
molecular conformations, the calculation of the virial coef-
ficients is much more cumbersome. The virial coefficients
B2 to B5 for hard models of several n-alkanes were reported
in ref 272, and the second virial coefficients of different linear
and branched hard alkane models were reported in ref 273.
For a hard model of a polymer with with fixed bond angle
and discretized torsional angles, B2 to B4 have been deter-
mined for different values of m.274

For flexible chains made up of hard monomers, the
calculation of the virial coefficients is still more complex.

For freely joined chains, the second virial coefficient has
been determined for different numbers m of monomers in
the chain,275 and more recently B2 to B4 have been deter-
mined.264 The effect of the flexibility on the virial coefficients
B2 to B4 of chains made of tangent hard spheres was analyzed
in ref 276.

Virial Coefficients for Hard-Body Fluid Mixtures

The partial contributions to several virial coefficients have
been determined for different hard-body fluid mixtures
(mainly hard-sphere mixtures). Some results can be found
in the cited review.250 Let us take a quick look at this point.

Mixtures of Additive Hard Spheres. The second and
third virial coefficients of a binary mixture of additive hard
spheres with different sizes are known analytically.277,278 The
partial contributions to the fourth,279-281 fifth,280-283 and
sixth281,283 virial coefficients have been determined numeri-
cally for different values of the diameter ratio and the seventh
virial coefficient has been reported for the size ratio R )
10.281

In addition, a procedure to obtain approximate, though very
accurate, analytical expressions for the virial coefficients was
proposed in ref 284, and the explicit expressions for B4 to
B7 obtained from this method are available.239,285 Another
procedure, equally accurate, was developed in ref 286, and
explicit expressions were provided for coefficients B4 and
B5.

On the other hand, in ref 287, explicit expressions for the
averaged second and third virial coefficients of a polydisperse
mixture of hard spheres were provided and the dependence
of the higher order virial coefficients on the moments of the
size distribution was analyzed.

Mixtures of Nonadditive Hard-Spheres. The second and
third virial coefficients for mixtures of nonadditive hard
spheres are analytical, and their expressions have been known
for a long time288 (see also ref 278). The partial contributions
to B4 and B5 for different diameter ratios and different
nonadditivities have been reported by different authors.281,289-291

Other Hard-Body Mixtures. The available numerical
calculations of the virial coefficients for HB mixtures of
nonspherical particles are very scarce. B2 to B4 were
calculated for a number of mixtures of hard-dumbbells.292

Much more recently,293 B2 to B5 for mixtures of the same
kind of molecules with different center to center distances
were calculated.

In a very recent paper,294 second virial coefficients have
been determined for mixtures of hard spheres and pseudohard
bodies mimicking the short-range repulsive interactions in
water.

To end this topic, it is worth mentioning here the analysis
performed in ref 295 on the virial coefficients B2 to B4 of a
hard model of a chiral molecule as well as those of the
racemic mixture. No differences were found between the
virial coefficients of the chiral molecule and those of the
racemic mixture.

Virial Coefficient for Fluids and Fluid Mixtures

A number of virial coefficients have been determined for
different fluids with other than purely hard-body interactions.
In some cases, several of the virial coefficients can be
obtained in an analytical way either directly or by means of
an inverse temperature expansion. Let us summarize the state
of the art for a number of potential models.
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Square-well potential. B2 to B5.268,296-300

Triangular-well potential. B2 to B4.301

InVerse power potentials. B2 to B7.296,302,303

Sutherland. B2 to B3.304-306

Lennard-Jones potential. B2 to B5.296,307-310

Kihara. B2.296,311

Polar rodlike molecules. B2.312

Dipolar hard sphere fluids. B3.313

Lennard-Jones with association sites. B2
314

Homonuclear and heteronuclear square-well diatomics. B2

and B3.315-317

Square-well chain molecules. B2.318

Quadrupolar Lennard-Jones diatomics. B2 to B4.319-321

Water models. B2 to B6.322

III. Progress in Perturbation Approaches to Solve
the Ornstein-Zernike Equation

A way to solve the Ornstein-Zernike equation with
several closures consists in using perturbation procedures.
However,perturbationapproachestosolvetheOrnstein-Zernike
equation are not new. The ORPA and related approximations,
also cited in the same section, can be considered from this
viewpoint. In general, the approaches for solving integral
equation theories consisting in splitting the intermolecular
potential into a reference potential plus a perturbation may
be considered as belonging to that category. This is the case
of the so-called corrected integral equations323 and other
related approximations.324 But the use of perturbation
procedures in conjunction with integral equation theories can
be tracked back to the work of Lado,325 later extended by
the same author,326 whose results, and other similar ap-
proaches, are referred to as reference integral equation
theories.327 All these theories have in common that they use
in one way or another the known results for the reference
system. Next, we will summarize the foundations of this kind
of theories and the progress in this field.

III.1. Corrected Integral Equation Theories
A method to improve the results provided by integral

equation theories was developed by Madden and Fitts,324 and
a closely related procedure was derived by Smith ad
Henderson,323 who denoted this kind of approximations,
based on the use of known results for the reference system,
as corrected integral equations.

The starting point in the Madden and Fitts procedure is to
consider a potential function of the form of eq 1 and the
corresponding series expansion for the rdf given by eq 6.
The derivatives in the latter equation can be approximated
by those obtained from the rdf gIE(r) provided by a particular
integral equation theory (IE), with the result

If we replace in this series g0(r) by g0
IE(r), we will obtain the

series expansion of gIE(r). Then, subtracting the two series,
the final result is

which is a compact version of eq 25. It is obvious that the
improvement introduced by this procedure relies on the
improved accuracy of g0(r) with respect to g0

IE(r).

A convenient feature of this procedure is that each of the
perturbative terms in the approximate expansion in eq 25 is
related to the previous terms in the expansion and can be
obtained from an iterative solution of the IE theory. This, in
turn, allows us to obtain the corresponding terms in an
approximate expansion for the free energy similar to eq 2.

Smith and Henderson323 denote the preceding kind of
approximations as hybrid theories and reserve the term
corrected theories for those resulting from a procedure
closely related to the former, consisting in splitting the total
and direct correlation functions into the contributions from
the reference system and the perturbation, namely

Inserting the two last equations into the Ornstein-Zernike
equation gives an integral equation which can be solved
provided that we know the total h0(r) and direct c0(r)
correlation functions for the reference system and we
introduce an approximate relation between h1(r) and c1(r).
There are subtle differences between the ordinary, hybrid,
and corrected IE theories. These differences are analyzed in
detail in ref 323.

III.2. Reference Integral Equation Theories
Let us consider the exact closure condition for the

Ornstein-Zernike equation

where y(r) ) g(r) exp [u�(r)] is the cavity function and B(r)
is the so-called bridge function. If the bridge function were
exactly known, we could exactly solve the OZ equation, but
this is not the case in general. Introducing different ap-
proximations for these functions, we obtain different ap-
proximate closures, giving rise to different integral equation
theories. When considering a potential of the form of eq 1,
the correlation functions and the bridge function will separate
into two contributions, one corresponding to the reference
fluid and the other to the perturbation. The procedure
developed by Lado325,326 consists in considering the exact
closure (eq 29) for the reference system and an approximate
one for the perturbation. This procedure leads to the so-called
reference integral equations.327 The reason for doing so is
that, whereas the bridge function is not exactly known for
the whole potential, if we use the HS fluid as the reference
system, accurate estimates for its bridge function are available
from simulations as well as an accurate analytical expres-
sion.328

Perhaps the most widely used of this kind of theories is
the reference hypernetted chain (RHNC) theory, in which
the bridge function is retained in eq 29 for the reference fluid
but neglected in the perturbation contribution. From the
viewpoint of eq 5 for the free energy, the RHNC consists in
retaining the function B0(r) of the reference system, corre-
sponding to λ ) 0, for any value of λ. This approximation
is justified by the uniVersality of the bridge function pointed
out by Rosenfeld and Ashcroft.329 The approximation is
completed with suitable optimization conditions for the
choice of the reference system. In the case that the potential
of the reference system depends only on a single length
parameter σ, as is the case of the hard-sphere system, the

g(r, λ) ≈ g0(r) + ∑
n)1

∞
∂

ngIE(r, λ)

∂λn |λ)0
λn

n!
(25)

g(r, λ) ≈ g0(r) + gIE(r) - g0
IE(r) (26)

h(r) ) h0(r) + h1(r) (27)

c(r) ) c0(r) + c1(r) (28)

c(r) ) h(r) - ln y(r) + B(r) (29)
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optimizing condition is330

In the case that the reference potential depends on an energy
parameter ε in addition to a length parameter, a condition
similar to eq 30 is imposed on ε. The theory provides very
satisfactory results for fluids with a variety of intermolecular
potentials that are either short-ranged or long-ranged. In fact,
this theory is often used to correct for the long-ranged
interactions in simulations with Coulombic potentials.331 An
efficient method to solve the RHNC equation for simple
fluids was developed by Lomba.332 The influence of different
conditions for thermodynamic consistency on the results
provided by the RHNC has been analyzed quite recently.333

A new route to obtain the thermodynamic properties of LJ
fluids within the framework of the RHNC theory has been
recently proposed by one of us.334

The RHNC theory has been extended to molecular
fluids335,336 using a bridge function B0(12) appropriate for
the hard diatomic molecules of the reference fluid.337,338 This
theory is referred to as RHNC-VM and provides satisfactory
accuracy for homo- and heteronuclear diatomic molecules
that are either polar or nonpolar.

The RHNC procedure has also been extended to mixtures
of molecules of charged hard spheres, using for the reference
system a mixture of hard spheres of unequal diameters. For
the rdf’s of the hard-sphere reference mixture, an extension
to hard-sphere mixtures214 of the Verlet-Weis expression
for monodisperse hard spheres35 has been used.339 A similar
procedure was used340 for Lennard-Jones mixtures within the
framework of the optimized RHNC theory.

This theory has proven to be accurate too for predicting
the structure and phase behavior of very asymmetric binary
mixtures of hard spheres treated in the effective one-
component approach.248 This is particularly remarkable
because of the short-range of the attractive depletion forces
in this situation. A crucial point in the one-component
approach is to determine the potential of the mean force
acting on the solute particles at infinite dilution due to the
presence of the solvent particles. This may be achieved by
computer simulations. An alternative procedure consists in
using the rdf of the solute particles at infinite dilution by
using a suitable integral equation. To this end, again the
RHNC theory with bridge functions Bij(r) obtained from the
fundamental measure theory341 may be useful.342,343 This
procedure has been quite successfully applied to confined
colloids.344-346

III.3. Perturbative Solutions of the Mean Spherical
Approximation

AnotherkindofperturbativesolutionoftheOrnstein-Zernike
equation has been developed by Tang and Lu347,348 within
the context of the mean spherical approximation (MSA). The
starting point is the expression of the total h(r) and direct
c(r) correlation functions as series expansions in terms of a
suitable parameter ε in the form

where the subscript 0 refers to the hard-sphere reference
system and subscripts i refer to the ith perturbative contribu-
tions. Combining these expressions with the Ornstein-Zernike
equation, these authors developed a general procedure, within
the framework of the mean spherical approximation, to obtain
the radial distribution function for fluids with a hard spherical
core potential as a sum of contributions in the form

where x ) r/σ is the reduced distance. The procedure lead
to analytical expressions for the zero- and first-order
contributions in expression 33 for a number of potential
models of the above-mentioned kind,348,349 giving rise to
accurate results for the thermodynamic and structural
properties.349,350 The theory also provides analytical expres-
sions for the direct correlation function c(r), which is
particularly useful in the study of inhomogeneous fluids, for
different kinds of intermolecular potentials.351,352 The pro-
cedure has been successfully extended to mixtures of fluids
interacting by means of spherical hard-core potentials.353

Analytical expressions up to fifth order in an inverse
temperature expansion of the energy and the rdf at contact
for hard-core Yukawa (HCY) fluids obtained on the basis
of the MSA were reported in ref 354 and later used355 to
analyze the thermodynamic properties and phase equilibria
HCY fluids with different ranges.

A novel perturbative solution of the MSA has been
proposed very recently for the hard-core Yukawa fluid.356 It
is based on the use of another hard-core Yukawa fluid with
a shorter range as the reference system. The structure of the
reference system is also determined from the MSA. The
structure factor thus obtained for the whole system performs
much better than that obtained either using for the reference
system the HS one or solving directly the MSA for the whole
system.

IV. Progress in the Perturbation Approach for
Constructing the Density Functional
Approximation

As a powerful computational tool for inhomogeneous
phenomena, the classical density functional theory (DFT)357

has experienced a huge development in the past 20 years,
and the perturbation approach also plays an important role
in this field. A recent review by Wu358 on density functional
theory includes some comments on the application of
perturbation procedures in combination with the DFT
formalism. The most essential quantity in the DFT is the
excess Helmholtz free energy Fex([F(r)]) expressed as a
functional of the density distribution F(r). As the exact
expression for the functional is never known, most theoretical
activity in the field is invested in devising appropriate
approximations for Fex([F(r)]) or its first-order functional
derivative: the inhomogeneous first-order direct correlation
function (DCF) c(1)(r,[F]). In this regard, the approximation
was first developed for the hard sphere fluids, and later,
various density functional approximations (DFA) were
proposed for general van der Waals fluids. We will first
discuss the DFA for the hard-sphere system and then the
DFA for other systems. As the present review is focused on

F∫ dr[g(r) - g0(r)]σ
∂B0(r)

∂σ
) 0 (30)

h(r) ) h0(r) + εh1(r) + ε2h2(r) + ... (31)

c(r) ) c0(r) + εc1(r) + ε2c2(r) + ... (32)

g(x) ) ∑
i)0

∞

gi(x) (33)

Perturbation Approach in Fluid and Fluid-Related Theories Chemical Reviews, 2009, Vol. 109, No. 6 2843



perturbation approaches in liquid state theory, development
of nonperturbation approaches in DFT will be skipped over.
These developments include the weighted density ap-
proximation (WDA)359 and the fundamental measure func-
tional (FMF).360 For a detailed account of these approxima-
tions, the interested readers are referred to ref 361.

IV.1. Density Functional Approximation for Hard
Spheres

Freezing

The pioneering work of Ramakrishnan and Yussouff
(RY)362 on application of the DFT approach to the freezing
of the hard-sphere fluid is based on a functional perturbation
expansion of a solid phase Fex([F]) around the liquid phase
coexistence density truncated at second order. The expansion
can be extended in a straightforward manner to third order,363

but the predicted coexistence conditions are much worse than
those of the second-order version. This fact indicates that
the convergence of the perturbation expansion for the solid
phase Fex([F]) is not fast enough. Haymet and Oxtoby364 have
shown that, at least for the hard-sphere solid phase, the third-
order term can be approximated by its value at zero wave
vector, because the nonzero wave vector contributions tend
to cancel each other; this discovery is exploited365 in
subsequent DFT investigations about freezing of non-hard-
sphere systems. In particular, the RY theory and its later
formulation were extended to investigating the freezing of
hard polymer chains.366

Inhomogeneous Liquid Phase

Although not sufficiently operative for the solid phase, the
functional perturbation expansion (FPE) has obtained enor-
mous success for the inhomogeneous liquid phase, for which
it is considered that the third-order term is necessary to
achieve better performance of the FPE approximation.367 The
FPE is usually operated in either of two ways; one is to
expand Fex([F]) itself; the other is to expand the nonuniform
first-order DCF c(1)(r,[F]). In any case, the n-th-order term
in the expansion depends on the n-th-order bulk direct
correlation function. Based on symmetrical and intuitive
considerations, a simple form of the third-order bulk DCF
was proposed368 for use in the third-order FPE approximation,
in the form

Here

or

where H(r) is the Heaviside step function. One adjustable
parameter B enters into the expression of c0

(3)(r1,r2,r3), which
has to be specified in practical DFT calculations. The
approximation in eq 34 was employed to study hard-sphere
and Lennard-Jones fluids,368 square-well fluids,369 the sticky
hard-sphere fluid,370 and Yukawa fluids371 in the perturbation

DFT framework, where the third-order FPE approximation
was used for the tail contribution and various WDA recipes
for the hard-sphere contribution. It has been shown372,373 that
with the needed bulk second-order DCF given by the mean
spherical approximation, as done in ref 371, terms higher
than second-order in the FPE of the tail contribution are
exactly zero, and the reason for the partial success371 of the
kernel function-based third-order FPE approximation for the
tail contribution is due to the adjustable parameter B and
the short-range of the kernel function. The approximation
in eq 34 was extended to binary hard-sphere mixtures,374 and
the resulting third-order perturbation DFT approach was
shown to perform satisfactorily for the inhomogeneous binary
hard-sphere mixture. Obviously, approximation 34 employs
the same kernel function for different interaction potentials
or different parts of the interaction potentials, so that specific
information for particular potential functions is not reflected
in the approximation. An analytical expression for the n-th
bulk DCF, which only needs the bulk second-order DCF as
input, was derived375 from a simple weighted density
approximation. This general analytical expression reduces
to the same functional form as in eq 34 for the bulk third-
order DCF, but the corresponding kernel function is replaced
by the bulk second-order DCF and the adjustable parameter
is exactly expressed by a quantity involved with space
integration of the bulk second-order DCF. The bulk third-
order DCF has ben successfully employed to calculate
analytically the three-body correlations in the mixed state
of type-II superconductors.376

The biggest merit of the FPE is its computational simplic-
ity, a point that becomes even more obvious for the case of
mixtures. However, its accuracy depends strongly on the
accuracy of the bulk high-order DCFs. We will return to
this point with more detail when discussing the DFA for
non-hard-sphere systems in subsection IV.2.

Hard-Sphere Bridge Density Functional Approximation

The bridge density functional approximation (BDFA) for
an inhomogeneous hard sphere fluid is also based on
expanding c(1)(r,[F]) around the coexistence bulk density Fb:

Here, c(1)(r,[Fb]) is the uniform counterpart of c(1)(r,[F]) and
c0

(n) is the bulk n-th DCF; each functional derivative, i.e. the
expansion coefficient c0

(n)(r,r1,...,rn-1;Fb), n g 2, is evaluated
at Fb. Based on the “universality” of the free energy density
functional, i.e. the functional form of Fex([F]) is not depend-
ent on the external potential responsible for the formation
of the density distribution F(r), and the fact that the uniform
bulk fluid is a particular kind of inhomogeneous fluid, it was
proved377 that the sum in eq 37 can be represented by a so-
called bridge functional which however has to be expressed
as a function of the second term on the right side of eq 37,
i.e.

c0
(3)(r1, r2, r3) ) B∫ dr4 a(r4 - r1) a(r4 - r2) a(r4 -

r3) (34)

a(r) ) 6

πσ3
H(σ2 - r) (35)

a(r) ) (1 - x2/σ2)H(|σ - x|) (36)

c(1)(r;[F]) ) c0
(1)(Fb) + ∫ dr1(F(r1) - Fb)c0

(2)(|r -

r1|;Fb) + ∑
n)3

∝
1

(n - 1)! ∫ dr1 ∫ dr2...

∫ drn-1 ∏
m)1

n-1

[F(rm) - Fb]c0
(n)(r, r1, ..., rn-1;Fb) (37)
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here, the bridge function B is exactly the one which, in
combination with the OZ integral equation, results in the
bulk second-order DCF c0

(2). Extension of the BDFA to a
binary hard sphere mixture is straightforward.378,379 The
BDFA and the FMF have been used380 to study inhomoge-
neous penetrable spheres with bounded interactions, with the
result that at low temperature the FMT functional is superior
to the BDFA and compares well with the computer simula-
tion results, whereas at high temperature the BDFA provides
better performance than the FMT functional.

Lagrangian Theorem-Based DFA for the Inhomogeneous
Hard-Sphere Fluid

We can make use of the Lagrangian theorem of differential
calculus and apply the functional counterpart of the theorem
to the FPE of c(1)(r,[F]) or Fex([F]) in the DFT of interest.
The outcome is that one obtains the full physics at the lowest
truncation of the FPE. Consequently, an associated parameter
results that is specified by statistical mechanics sum rules.
Implementation of the above idea in c(1)(r,[F]) leads to a so-
called Lagrangian theorem-based density functional ap-
proximation (LTDFA)381 for the inhomogeneous hard sphere
fluid, and different sum rules lead to different values of the
associated parameter. A simple hard wall sum rule gives for
the parameter a value close to 0.5,381 while another sum rule
ascertains the parameter value to be exactly equal to 0.5.382

The implementation of the procedure in Fex([F]) was also
carried out.383 Extension to a binary hard sphere mixture is
straightforward,384 and the prediction accuracy is acceptable.
A desirable character of the LTDFA381 is its self-correction
capability,385 which perhaps devitalizes the harmful outcome
arising from a poor accuracy of the second-order bulk DCF
used as input. This character directly leads to a kind of
LTDFA for polymer formed by hard sphere chains.386 Using
a procedure similar to that underlying the LTDFA,381 a new
WDA approach for inhomogeneous fluids was developed387

which was shown to be appropriate for hard-sphere and
Lennard-Jones fluids in confined geometries. The application
of the LTDFA381 to general van der Waals fluids will be
discussed in subsection IV.2.

IV.2. Density Functional Approximation for
General Inhomogeneous van der Waals Fluids

The developments in the case of non-hard-sphere DFAs
largely lag behind those for the hard-sphere DFAs. Until
several years ago, the most generally employed DFAs for
general inhomogeneous van der Waals fluids were still crude
van der Waals mean field approximations (MFA) with varied
degrees of sophistication. Only in recent years, were several
novel non-hard-sphere DFAs advanced by different authors,
bringing new expectations for improving accuracy. Currently,
the perturbation approach predominates over DFAs for
general van der Waals fluids. There exist different kinds of
implementations with different degrees of numerical com-
plexity and accuracy. We will describe the developments in
this field by following the time sequence in which these
methods were advanced.

van der Waals Mean Field Approximation

The interaction potentials in van der Waals fluids usually
consists of a highly repulsive term at short interparticle
separations and a weakly attractive part at larger interparticle
separations. Although the Fex([F]) can be expressed exactly
as357

where g(r,r′;λ) is the pair correlation function of the system
with a density distribution F(r) and a pair potential uλ(r,r′).
Some approximation is needed to proceed from eq 39
because little is known about g(r,r′;λ). A common procedure
underlying most DFT approximations is to separate the pair
potential into a short-range repulsive part u0(r,r′) and a long-
range attractive part u1(r,r′). Accordingly, Fex([F]) is com-
posed of a repulsive term F0([F]) and an attractive term
Fper([F]). The repulsive part is usually approximated by the
hard-sphere potential with an effective diameter d; as a result,
F0([F]) can be replaced by the excess free energy functional
of the corresponding inhomogeneous effective hard-sphere
fluid. On the other hand, Fper([F]) is now given by

If one assumes that

then, combining eqs 40 and 41, one obtains the MFA for
the long-range part,

It was shown388 that in case of the Lennard-Jones fluid
near a hard wall the MFA is qualitatively incorrect at low
densities and quantitatively inaccurate at intermediate and
high densities. However, the MFA at least qualitatively
describes389 the first-order wetting and triple-point prewetting
transitions of the model LJ fluid in the presence of attractive
walls or neon on solid CO2. This is possibly due to the fact
that the strong attractive forces between the fluid particles
and the wall overshadow the attraction between the fluid
particles themselves and, as a result, the poor performance
due to the MFA is not displayed.

Combining the Wertheim and the WDA treatment extend-
ing the bulk associative contribution to an inhomogeneous
case, the MFA has been applied390 to study a simple model
of an associating Lennard-Jones fluid confined by slitlike
pores with Lennard-Jones adsorbing walls. It has been found
that the computer simulation density profiles are reproduced
quite well by the resulting perturbation DFT. It may be that
the satisfactory performance achieved is due to the combina-
tion of the accurate treatment of association and the strong
attractive forces between the associating Lennard-Jones
particles and the walls, which overshadows the inaccuracy
of the MFA for the dispersion attraction between the
associating Lennard-Jones particles. The MFA can be
improved by replacing g(r,r′;λ) by the pair correlation

c(1)(r;[F]) ) c0
(1)(Fb) + ∫ dr1(F(r1) - Fb) c0

(2)(|r -

r1|;Fb) + B(∫ dr1(F(r1) - Fb) C0
(2)(|r - r1|;Fb)) (38)

Fex([F]) )
1
2 ∫ ∫ dr dr′F(r) F(r′) u(r, r′) ∫0

1
dλ g(r, r′ ;λ) (39)

Fper([F]) )
1
2 ∫ ∫ dr dr′ F(r) F(r′) u1(r, r′) ∫0

1
dλ g(r, r′ ;λ) (40)

g(r, r′ ;λ) ) H(|r - r′ | - d) (41)

Fper([F]) ) 1
2 ∫ ∫|r-r′>d

dr dr′ F(r) F(r′) u1(r, r′)
(42)
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function ghs(r,r′) of the effective hard-sphere system, which
actually constitutes a formal extension of the bulk first-order
TPT to inhomogeneous systems, that is

As a general rule, the subsequent approximation is to
substitute ghs(r,r′) by its bulk counterpart, i.e. the bulk hard
sphere rdf evaluated at some effective density F̃. Different
specifications for F̃ define different improvements on the
MFA. A simple recipe391 is to assume F̃ ) F[(r + r′)/2] or
F̃ ) [F(r) + F(r′)]/2. A more reasonable and safe procedure388

is to take F̃ ) jF[(r + r′)/2] or F̃ ) [Fj(r) + Fjr′)/2], with Fj
being the local density averaged over a sphere of appropriate
radius. Following the same procedure, the bulk second-order
MCA-TPT was also extended388 to inhomogeneous systems,
and the improvement over the MFA was remarkable. It is
to be pointed out that all of the above approximations can
be applied to the solid phase, with the only difference being
that the simple local approximation F̃ ) F[(r + r′)/2] or F̃
) [F̃(r) + F(r′)]/2 will not work in the solid phase because
F(r) reaches values which are many times larger than the
maximum allowed density in the uniform liquid. In fact, most
of the correlation structure in the solid phase is already
implicitly included392 in the density product, so that the MFA
performs well for solid phase perturbation free energy
calculations.393 As a result, ghs(r,r′) should be almost a
Heaviside step function. Correspondingly, the effective
density F in the solid phase rdf mapping is expected to be
very small. To achieve this requirement, the usual recipe for
determination of the effective density in the inhomogeneous
liquid phase certainly does not suit the solid phase situation,
so that an alternative recipe has to be devised. By an exact
local-compressibility relation, a position-dependent F̃ can be
determined as follows392

where µ is the chemical potential. A simpler recipe may be
obtained394 using a constant effective density, which is
obtained from the exact global compressibility equation

where 	T is the solid isothermal compressibility and F its
mean density. The above two recipes predict very small
values of the effective density and, therefore, are consistent
with the above-mentioned intuitive conclusion. By combining
any suitable equation of state for the hard-sphere solid phase
with any of the two recipes for calculation of the perturbation
free energy, the resulting perturbation theory predicts392,394,395

the solid-liquid transition for several model potentials in
satisfactory agreement with the corresponding simulation
results.

The simple MFA has been recently extended396 to a
Lennard-Jones solid having a small fraction of vacancies
present in the lattice. To this end, the test density function
was modified from its usual form to take into account the
presence of vacancies and F0([F]) was calculated in terms

of an equivalent hard sphere system treated by means of a
modified WDA361 (MWDA). It was found that at the liquid-
crystal coexistence the vacancy concentration is dependent
on temperature.

Perturbation Weighted Density Approximation (PWDA)

Although the WDA359,361 was originally devised to cope
with the inhomogeneous hard-sphere fluid, its physical
foundation does not exclude its use to construct functionals
for the perturbation term. In practice, the possibility that the
weighted density, as an argument of the bulk thermodynamic
and/or structural functions, enters the vapor-liquid coexist-
ence region of the phase diagram perhaps does not favor, to
some extent, the WDA application in modeling the functional
of the perturbation term, but exceptions truly exist. Thus,
the WDA has been used397 to construct a functional for the
square well tail term

where fper stands for the bulk excess Helmholtz free energy
per particle, corresponding to the perturbation part, and F̃(r)
was calculated, as usual, in the form

using a normalized negative SW tail as the weighting
function397

In ref 397, eq 46 was combined with a MFA for fper and a
version of the WDA for the hard-sphere repulsive contribu-
tion. The resulting DFT approach predicts the wetting and
drying transitions of the SW fluid at solid surfaces and also
compares favorably with the simulation results. A more
sophisticated WDA version was proposed398 for the perturba-
tion term wherein the weighting function is expanded to n-th
order in density, an approach first used by Tarazona.399 The
required input information is only the bulk second-order DCF
at nonzero density points and an equation of state for the
fluid under consideration. The n ) 1 and n ) 2 versions of
this PWDA approach, in combination with the FMF for the
hard sphere term, were numerically implemented for both
supercritical and subcritical temperatures for the LJ fluid,
and it was found that the n ) 1 version performs more
satisfactorily than the plain MFA for supercritical adsorption
and the same is true for the n ) 2 version for the subcritical
prewetting transition.357,361,398

In contrast with ref 398, wherein the weighting function
is a function of a position-dependent weighted density, other
authors400 used a position-independent weighted density F̂
as an argument of the weighting function to calculate the
weighted density F̃, i.e.

where

and the weighting function is simply given by

Fper([F]) ) 1
2 ∫ ∫ dr dr′F(r) F(r′) u1(r, r′) ghs(r, r′)

(43)

∫ dr′ F(r′)[gr(|r - r′ |), F̃(r) - 1] ) -1 + kT
F(r)

dF(r)
dµ
(44)

1
N ∫ dr F(r)∫ dr′F(r′)[g r(|r - r′ |, F̃) - 1] )

- 1 + kTF	T (45)

Fper([F]) ) ∫ dr F(r) fper(F̃(r)) (46)

F̃(r) ) ∫ dr′ F(r′) ω(|r - r′ | ;F̃(r)) (47)

ω(r) ) -�ua(r)/ ∫ dr (-�ua(r)) (48)

F̃(r) ) ∫ dr′ F(r′) ω(|r - r′ | ;F̂) (49)

F̂[F] ) 1/N∫ dr dr′ F(r) F(r′) ω(|r - r′ | ;F̂)
(50)
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where catt
(2)(r;Fb) is the bulk second-order DCF corresponding

to the perturbation part and is obtained by removing the bulk
hard sphere second-order DCF from the bulk second-order
DCF of the fluid of interest. Obviously, besides fper, this
version of PWDA needs the bulk second-order DCF of both
the considered fluid and hard sphere fluid as input. As a
result, this version may break down when applied to
subcritical situations. In contrast, it has been shown that the
version works well for the LJ fluid supercritical adsorption.

Recently, a carefully designed PWDA has been pro-
posed.180 It is similar to the procedures adopted in ref 400
but differs in that (i) it employs eq 49 but substitutes ˆF by
a coexistence bulk density Fb, (ii) it employs eq 46 but the
fper comes from a recently proposed fifth-order TPT,180 (iii)
it also employs eq 51 but c(2)(r;Fb) comes from a proposed
analytical expression which is made consistent with fper by
means of a scaling procedure using an appropriate factor.
Because the acquisition of the analytical expression does not
resort to a numerical solution of the OZ integral equation
theory, it applies to the entire phase diagram. As a result,
this PWDA version works well for both supercritical and
subcritical temperature regions.

Partitioned Density Functional Approximation and “Universal”
Theoretical Way

A free energy model for inhomogeneous fluid mixtures
of charged hard spheres with Yukawa tails was considered
in ref 401. The model separates the excess free energy into
the hard-sphere (HS) and charge (C) parts. It was considered
that a FPE of the charge contribution to the free energy for
the inhomogeneous fluid around its uniform limit is, in the
strong-coupling limit, practically terminated at second order.
In turn, the second-order FPE approximation cannot lead to
large errors for weak coupling. Using the WDA concept, it
has been proved402 that the second-order FPE of c(1)(r,[F])
around the bulk limit is sufficiently reliable in the case of
weak dependence of the bulk second-order DCF on its
density argument. For a potential function with a highly
repulsive core at short distances, the tail part of the bulk
second-order DCF is surely very weakly dependent on the
density argument, as shown by numerous solutions based
on the OZ integral equation theory. As a result, the second-
order FPE approximation should be truly highly accurate for
the perturbation part. Generalization of the proof to many-
component systems is straightforward. Integrating c(1)(r,[F])
leads to the single component version of the free energy
model.401 Therefore, ref 402 gives actually a proof of the
intuitive conclusion of ref 401 and generalizes the conclusion
to any potential functions with a highly repulsive core at
short distances. If the OZ integral equation is solved under
a mean spherical approximation, the resulting bulk second-
order DCF is completely density-independent for the per-
turbation part. According to the proof given in ref 402, the
second-order FPE approximation for the perturbation con-
tribution is exact, a point that is obviously appreciated and
applied in the literature.372,373,402,403

Several DFAs for nonhard sphere fluids have been derived
from the above finding. These DFAs divide the potential and
correlation functions of interest into a hard core part and a
perturbation part and then employ the second-order FPE
approximation to cope with the perturbation part, and various

hard-sphere DFAs for the hard-core part. Thus, refs 373 and
402 and 403 employ for the hard core part the LTDFA,
whereas ref 372 uses the third-order FPE approximation,375

and all of them consider the second-order FPE approximation
for the perturbation part. The resulting DFAs perform well
for the density profile calculation of the hard-core attractive
Yukawa and Lennard-Jones model fluids. The third-order
+ second-order perturbation DFT reported in ref 372
subsequently was applied404 to model fluids with interaction
potentials other than the hard-core attractive Yukawa one,
and it was found that the DFA is adequately accurate only
on the condition that the imported bulk second-order DCF
is sufficiently reliable. In particular, it was found405 that the
third-order + second-order perturbation DFT is in the same
measure applicable to the hard-sphere + repulsive tail
potential function. In ref 352 the inhomogeneous Lennard-
Jones fluid was studied by employing the second-order
perturbation for the tail part and the FMF for the hard core
part; the input, the bulk second-order DCF, is obtained from
the first-order MSA.352 The resulting DFA displays satisfac-
tory performance for predicting density profiles originating
from the LJ fluid subjected to several kinds of external field.
Another proposed approach, the so-called “uniVersal”
theoretical way,406 makes use of the second-order FPE
approximation for the tail part, but the hard-core part is
substituted by the hard-sphere model with an effective hard-
sphere diameter. One key point of the perturbation expansion
for the hard-core part is kept unchanged whereas the sum of
the expansion terms beyond the leading one is replaced by
the corresponding sum for the effective hard-sphere fluid.
The final effect is equal to a combination of the second-
order FPE approximation for the sum of the hard-core and
tail parts and an additional term representing the sum of the
terms beyond the leading one and modeled by an effective
hard-sphere fluid. It was found that that, in combination with
the LTDFA,381 performs outstandingly well and, in fact,
much better than any other existing DFA.

Within the category of the partitioned DFA, we can also
include the work of Tang and Wu,407 who employed the first-
order mean-spherical approximation via the energy route for
the functional of the intermolecular attractive forces and
improved the MFA for the inhomogeneous Lennard-Jones
fluid.

IV.3. Perturbation Density Functional
Approximation for Inhomogeneous Chain
Molecules

The perturbation DFA (PDFA) for inhomogeneous chain
molecules was formulated408 by applying the Wertheim’s
TPT for polymerization.78-81 An approximate expression of
the intrinsic Helmholtz free energy of a fluid of rigid or
flexible molecules was expressed408 as a functional of the
full single molecule distribution function in the limit of
complete association in a multicomponent mixture of atoms
interacting by forces of chemical bonding type. In the PDFA,
the excess contribution to the free energy is calculated
perturbatively over a reference fluid of monomers at the same
temperature and singlet density as the real system. The PDFA
goes beyond self-consistent field theory409 in that it is the
intramolecular distribution function which appears as the
central quantity of the PDFA, while the DFT of the type of
the self-consistent field (SCF) approximation employs the
monomer density as the central variable. Accordingly, the

ω(r, F) ) catt
(2)(r;Fb)/ ∫ dr catt

(2)(r;Fb) (51)
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set of coupled Euler-Lagrange equations in the DFT of the
type of the SCF approximation can be closed at the level of
the monomer density, without resorting to two-point or
multipoint functions, as in the TPT1 or TPTN versions of
the PDFA, which obviously can be considered as less
numerically demanding. The PDFA was found to be
appropriate408,410 for studying nonoverlapping hard-sphere
polyatomic fluids in the presence of external fields (such as
near a hard wall and in a slitlike pore). The intermolecular
structure of the uniform chain fluids also can be obtained408

in the framework of the PDFA by functional differentiation
and inversion of the Ornstein-Zernike equation. As noted
by the authors of the PDFA, it is difficult to apply it to
overlapping associating monomers. Applications to systems
with attractive interactions between associating monomers
and/or monomers and surfaces neither have been reported.
Compared to the DFT of the type of the SCF approximation
for inhomogeneous chain molecules,409,411 the PDFA is more
microscopic and supplies more information about the mono-
mer density distribution. As an approximation surpassing the
SCF one, the PDFA supplies a starting point for further
simplifications and practical applications, and it should be
paid much attention. However, proper attention is not given
to the PDFA formalism.408

Application of the Wertheim’s TPT to inhomogeneous
chain fluids also can adopt the form of an interfacial statistical
associating fluid theory412 (iSAFT). The iSAFT expresses
the inhomogeneous Helmholtz free energy as the corre-
sponding homogeneous SAFT one evaluated at appropriate
weighted densities, except that the inhomogeneous ideal
monomer term is obtained by simply replacing the monomer
density by the monomer density distribution. Accordingly,
more than one kind of weighted densities is needed to convey
the inhomogeneous expression. A ruling advantage of the
iSAFT may lie in its monomer-based character; this character
makes the computational expense of the iSAFT far less
demanding than that of the molecule-based polymer PDFA408

and actually approximately equal to that of the atomic DFT.
One kind of the molecule-based polymer DFT413 also
expresses the inhomogeneous free energy due to excluded-
volume effects and chain connectivity by using the free
energy of the homogeneous fluid evaluated at weighted
densities. A basic distinction between the two approaches412,413

lies in that the molecule-based polymer DFT413 accounts for
the intramolecular interactions due to the direct bonding
potential by an ideal free energy functional, which is based
on the full single molecule distribution function, while the
iSAFT takes account of the free energy contributions due to
the direct bonding potential by a so-called association free
energy term of the bulk SAFT evaluated at an appropriate
weighted density. The many body nature of the molecule
distribution function and bonding constraints lead to ex-
tremely complicated density profile equations of the molecule-
based polymer DFT, whose numerical solution is possible
only on condition that the considered polymer is a freely
jointed tangent chain.413,414 For other kinds of polymer
molecules, the solution of the density profile equations
requires the help of a single polymer chain simulation.415 It
has been found412 that the iSAFT offers an accuracy
comparable to that of the molecule-based polymer DFT, but
the computational expense for the iSAFT is largely reduced.
It has been indicated416 that the iSAFT can successfully be
applied to study polymer melts, solutions, and blends
confined in slitlike pores. One advanced version of the iSAFT

suitable for complex fluids of biological interest has also been
advanced recently.417

There exist other theoretical ways also belonging to the
kind of perturbation approach and suitable for tackling
inhomogeneous phenomena. Shih, Wang, Zeng, and Stroud
presented418 a generalization of the Ginzburg-Landau
formalism to investigate the interfacial tension between
simple solids and their coexisting liquids. This simple order-
parameter theory uses the amplitude of the density wave at
the smallest nonzero reciprocal-lattice vector of the solid as
the principal order parameter, and the density difference
between solid and liquid is included to second order.
Although oversimplified, the approach has the advantage that
all the parameters entering the theory can be deduced in a
simple fashion from bulk properties, which may then be used
to predict surface properties. Particularly, the theory can be
used to discriminate between states of different symmetry
and behaviors along different crystalline interfaces.

V. Other Advances in Perturbation Theories for
Topics of Chemical Interest

Along with the development of the statistical mechanics
theory of liquids, some traditional physical chemistry topics,
which previously mainly dealt with thermodynamic ap-
proaches,419 are now tackled successfully with microscopic
statistical mechanics approaches. In the past two decades,
many novel perturbation methods have been developed to
handle problems such as solvation phenomena, the origin
of hydrophobicity, molecular liquids and complex fluids,
nucleation, wetting and drying transitions, capillary conden-
sation, etc. In addition to the above discussion about the
progress of the perturbation methods in liquid theories, we
will give an overview of applications of the perturbation
approaches in molecular liquids and complex fluids, solvation
free energy, and hydrophobicity. As for the nucleation
phenomenon and phase transitions under confining condi-
tions, such as wetting and dewetting transitions, capillary
condensation, and so on, because they currently mainly fall
into the field of the DFT, they are beyond the scope of the
present review.

V.1. Molecular Liquids and Complex Fluids
Molecular liquids are characterized by orientation-depend-

ent intermolecular potentials made up of a number of
site-site interactions of different kinds. Taking water as an
example, three main types of interaction between the water
molecules can be identified:420 (i) short-range repulsion, (ii)
short-range strongly orientation-dependent attractions (identi-
fied as hydrogen bonding), and (iii) long-range electrostatic
(primarily dipole-dipole) interactions. Complex intermo-
lecular interactions conduce to anomalous thermodynamic
behavior of liquid water, such as a temperature of maximum
density in the liquid phase, a negative thermal expansion
coefficient in the liquid range, and a large heat capacity.
Persuasive explanation and prediction for these anomalies
at the molecular level is truly a challenge to traditional
theoretical approaches well established for simple liquids
with underlying spherically symmetrical potentials.

For the formulation of a perturbation theory, the most
important parts are the definition of the reference system,
around which the perturbation expansion is implemented,
and the rapid and reliable determination of the thermody-
namic properties and structure functions of the reference
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system, preferably in an analytical form. To ensure conver-
gence of the perturbation expansion, it is requested that the
structure and thermodynamic properties of the realistic fluids
are determined mainly by those of the chosen reference
system. Computer simulations reveal421 that the structures
of the real water and its short-range (both repulsive and
attractive) counterpart are nearly identical regardless of the
thermodynamic conditions considered. A short-range refer-
ence system has been defined422 in such a way that the
perturbationexpansioniswritten inpowersof thedipole-dipole
interaction only. It was shown that this reference system
provides the same structure and thermodynamics as other
reference systems used in ref 421 and captures, for three
realistic model potentials of water (two nonpolarizable ST2
and TIP4P models and one polarizable TIP4P/P model), at
least 95% of the total internal energy over the entire
temperature-density plane. An analytic expression for the
Helmholtz free energy of a short-range reference system
obtained from the TIP4P model potential of water has been
derived recently423 by deducting the long-range part of the
Coulombic interactions. In agreement with previous conclu-
sions, it was found423 that the short-range reference system
exhibits, in addition to a faithful representation of the
structure of water, the same anomalous features that are
characteristic for real water. All of these findings indicate
that the perturbation approach is qualified to become a
justified tool to be used to develop a molecular theory for
water. Wertheim’s thermodynamic perturbation theory for
associating fluids was applied424 to a two-dimensional model
of water, and it was found that the resulting TPT approach
gives quantitative agreement with the MC simulations for
“hot” liquid water, although it does not predict the properties
of “cold” water equally well. By replacing the hard-disk
reference system of ref 424 by a Lennard-Jones reference
system and calculating the effective density of the reference
system self-consistently, a revised TPT for the same model
of water has been proposed recently,425 showing a significant
improvement over the original version in that it predicts the
key anomalies of “cold” water, such as a minimum in the
molar volume and large heat capacity.

Apart from various modifications of the SAFT approach,
the application of the perturbation approach to complex fluids
is mainly based on the phenomenological GL theory.

A modified single order parameter GL free energy, which
yields several modulated phases and their coexistences, is
given426 by

where φ(r) ) ψ(r) - ψc is the order parameter, in which
ψc is the composition at the critical temperature Tc, and τ )
(T - Tc)/Tc is the reduced temperature. The spatial modula-
tions are preferred due to the negative coefficient of the
gradient square term and the competition between this term
and the Laplacian square term. Such a free energy functional
has been used to describe various systems such as diblock
copolymers,427 Langmuir films,428 magnetic layers,429 and
microemulsions430 and to calculate for diblock copolymer
morphologies431 and the relative stability of the lamellar and
hexagonal phase.432 The dynamical extension of the free
energy functional is employed to describe the dynamics of
the lamellar-hexagonal phase separation,433 pattern forma-
tion and nucleated growth in a binary phase-separating

liquid,434 and the phase separation process435 of a two
component miscible system that demixes due to the inclusion
of a third component that interacts preferentially with one
of the two components.

Controlling the morphology of the domains generated by
the phase separations helps to design and regulate physical
properties of the polymer materials such as permeability,
electrical conductivity, and mechanical properties. One kind
of phenomenological DFT based on the time-dependent GL
scheme has been being used to investigate the mechanism
of the phase separation and the domain formation of polymer
materials. To obtain theoretically the phase diagram of a
diblock copolymer, Leibler436 employs a power series expan-
sion of the free energy up to the fourth-order terms in the
segment density fluctuations wherein the expansion coef-
ficients are evaluated using the random phase approximation
(RPA). Ohta and Kawasaki437 used a simpler form of the
Leibler expansion and a long-range part while the long-range
part is approximated by the long-range asymptotic form of
the second-order term in the expansion; the OK theory
succeeds in qualitatively reproducing the phase diagram of
the microdomain structures of the diblock copolymer in the
strong segregation region. Bohbot-Raviv and Wang438 evalu-
ated the second-order term using the RPA and combined it
with the higher order terms in the expansion of the
Flory-Huggins free energy; this theory predicted several
microdomain structures of star polymers and linear triblock
copolymers. Uneyama and Doi439 generalized the OK theory
to melts and blends of any types of polymer architectures,
i.e., the branching structure and the order of the sequence
of the segments along the chain, and reproduced micellar
structures, obtaining a phase behavior of the micelles that is
in agreement with the experimental phase diagram. Due to
the truncation error of the Taylor expansion of the free energy
used in the phenomenological DFT, and the sizable effect
of the truncation error from the intermediate to the strong
segregation regions, these phenomenological DFT ap-
proaches break down in the strong segregation region. A
hybrid dynamic DFT440 has been developed from a combina-
tion of the dynamic self-consistent field (SCF) theory and a
time-dependent GL type theory. The hybrid theory makes
use of both the accuracy of the SCF theory in both weak
and strong segregation regions and the advantage of the
modest amount of computational cost required by the
phenomenological DFT, and it reproduces the metastable
complex phase-separated domain structures of an ABC
triblock copolymer observed by experiments.

In ref 441 it is shown that the Landau model provides a
general framework for studying glassy dynamics in a variety
of systems, such as supercooled liquids, foams, and granular
matter. In combination with the nanothermodynamics, the
Landau theory for phase transitions has been adapted442 to
treat finite-sized thermal fluctuations inside bulk complex
fluids; the resulting theory yields a Vogel-Fulcher-Tammann-
type relaxation rate, typical of a glass transition, and provides
an explanation for the distribution of relaxation times and
heterogeneity that are found in glass-forming liquids. The
time-dependent GL equation443 also successfully describes
the phenomenon of critical slowing down, whereby the
relaxation time for the order parameter fluctuations scales
as a power of the correlation length, which in turn diverges
asthecriticalpoint isapproached.Inref444aGinzburg-Landau
type equation is proposed and used to explain the Fischer

F{φ(r)} ) ∫ dr[2(∇ 2
φ)2 - 2(∇φ) 2 + τ

2
φ

2 + 1
4
φ

4]
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cluster phenomenon, the so-called long-range correlations
of density fluctuations, for glass-forming liquids.

V.2. Solvation Free Energy and Hydrophobicity
Solvation free energy (hydration free energy in water or

aqueous solutions), a crucial quantity in understanding the
degree of solubility of solute in solvents, is defined as the
free energy of transfer from a vacuum (or infinitely dilute
gas) to a solvent. Since the solvation free energy strongly
depends on the solvent density and composition and can
much exceed kT, it is a basic and essential quantity for
calculating solubilities, partition coefficients, binding affini-
ties in host-guest systems, etc. and plays various important
roles in many processes, such as formation of micelles and
biological membranes, protein folding, enzyme catalysis,
molecular recognition among proteins, and aggregation of
transmembrane helices, drug delivery to receptors, and so
on. The enumerated examples have been the main subjects
in soft matter physics.

Perturbation strategy tackling solvation phenomena can
roughly be classified into five kinds. One is the thermody-
namic perturbation theory (TPT); another is the perturbation
density functional theory (PDFT) approach; another is a
computer simulation technique based on free energy pertur-
bation; finally, one has the Ginzburg-Landau type approach
and the distribution function integral equation approach. We
will illustrate these five kinds of perturbation approaches with
representative examples.

Thermodynamic Perturbation Theory

A Padé truncation approximation of the TPT due to Stell
and co-workers445 has been used to calculate the solvation
chemical potential of a dipolar solute in a model fluid of
dipolar hard spheres. It was shown446 that the basic failure
of continuum theories consists in their inaccurate description
of the internal energy and entropy of solvation. However,
the Padé truncation approximation calculates the solvation
chemical potential, in agreement with the whole body of
simulation results, within an accuracy of 3%; the internal
energy and entropy of solvation are also accurately described
by the Padé truncation approximation. One of the merits of
the Padé truncation approximation is its analytical simplicity
and ease of including the molecular (generally anisotropic)
polarizability. A semiempirical approach for predicting the
work of formation of a cavity inside a model fluid, specif-
ically for fluids that contain an attractive term in the
intermolecular potential, has been proposed447 by combining
the scaled particle theory for hard particle fluids and the free
energy perturbation method for the perturbation term. Fol-
lowing the procedure used in bulk TPT, the work of
formation of a cavity is decomposed in ref 447 into a
reference part and a perturbation part. By mapping the
reference system to a hard sphere fluid with an appropriate
effective density, the former can be calculated by using an
expression for the work of cavity formation within a hard-
sphere fluid obtained by Matyushov and Ladanyi,448 while
the perturbation part is calculated in a mean field manner
analogous to that for the bulk fluid, by neglecting the
correlations inside the fluid due to the presence of the cavity
except for the fact that the local solvent density inside the
cavity is set to zero as it is. This approach appears to be
valid over a broad range of conditions, even performing well
when the fluid is metastable. A TPT for hydrophobic

hydration has been constructed449 based on an analytical
cavity formation equation of state. The TPT approach was
found449 to compare favorably with experimental rare-gas
solubility data; it predicts a strong temperature dependence
of the critical length scale for the hydrophobic dewetting
transition and can evaluate the fundamental solute-solvent
interaction contributions to rare-gas hydration chemical
potentials. As the cavity equation of state is built on pure
water experimental and simulation data, it accurately spans
the atomic, molecular, mesoscopic, and macroscopic cavity
size regimes over a wider region of the water phase diagram.
Particularly, this allows the TPT approach to be extended
realistically to regimes in which direct measurements are not
available. In ref 450, the TPT was applied to study the
transfer of two-dimensional Lennard-Jones solutes into the
two-dimensional Lennard-Jones solvent and the necessary
expressions to calculate the transfer properties were derived.
It was found450 that the TPT results agreed very accurately
with the exact computer simulation data, which provides
some confidence in the application of the TPT to more
realistic systems. It should be pointed out that the 2D
Lennard-Jones fluid can be used as a reference system of
the two-dimensional MB model of water, as this model, when
stripped off the hydrogen bonding arms, is just a 2D Lennard-
Jones fluid.424,451

Perturbation Density Functional Theory

Perturbation DFT was used to investigate the hydration
forces between two infinite planar surfaces in ref 452, where
it is foundthat themost important featureof thesurface-solvent
potential that governs primarily the solvation force is its
range, whereas the effect of using an orienting surface-solvent
potential is of secondary importance. In ref 453 was
addressed at length the dependence of the properties of the
solvation force between identical planar walls on the
wall-fluid potential and the thermodynamic state of an
intervening solvent with a truncated LJ potential. It was
found453 that, for long-ranged wall-fluid potentials decaying
as -Az-p, zf∞, with various values of p, the solvation force
is always repulsive away from the critical region of the bulk
LJ fluid. For large wall separations L, the solvation force
can be decomposed into a positive regular part and a negative
singular part; in particular, the regular part decays with the
same power law as the wall-fluid potential, and the singular
part is responsible for the critical singularities at the bulk
critical point and vanishingly small away from the critical
region. Perturbation DFT has also been used recently to
explore the solvation properties and the local solvent density
augmentation of a spherical solute immersed in a monatomic
fluid and a supercritical diatomic fluid, respectively.454 It has
been found that the behavior of the local coordination number
in homonuclear diatomic fluids follows trends similar to those
reported in previous studies for monatomic fluids; the
associated solvation free energies exhibit a nonmonotonous
behavior as a function of density for systems with weak
solute-solvent interactions, and the solute-solvent interac-
tion anisotropies have a major influence on the nature and
extent of local solvent density inhomogeneities and on the
value of the solvation free energies in supercritical solutions
of heteronuclear molecules. On the basis of the perturbation
DFT approach, a theory for solvophobic phenomena which
can predict the spacial packing behavior of solvent as well
as the free energy of solvation and the free energy cost of
solvating cavities has been developed by Sun.455 The most
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remarkable characteristic of this perturbation DFT approach
lies in that it does not have to rely on a particular potential
function of the solvent-solvent interaction. Rather, it is based
on experimentally observed liquid structure and thermody-
namic observables such as equation of state and surface
tension. As a result, the approach is able to treat molecular
liquids in a fashion very similar to simple fluids with an
underlying spherically symmetrical potential function. The
author employs the approach to investigate the cavity
formation in liquid water, and encouragingly, the theoretically
calculated excess chemical potential and cavity-water radial
distribution function are in very satisfactory agreement with
experimentally measured values and computer simulation
results based on a SPC model of water. Another recent
application of the perturbation DFT formalism is the solva-
tion in a molecular solvent,456 taking into account the
microscopic structure of the solvent, the dipolar saturation,
and the nonlocal character of the dielectric constant. It was
shown456 that the functional can be minimized numerically
on a three-dimensional grid around a solute of complex shape
to provide, in a single shot, both the solvent local density
and the absolute solvation free energy. Many relative
quantities, such as association constants or affinities, can be
deduced from the absolute solvation free energy. The main
inadequacies of this recipe are that (i) the functional is
actually a lowest functional perturbation expansion ap-
proximation, and an additional approximation is needed to
calculate the free energy from the solvent local density; and
that (ii) important features of water, such as a H-bonding
network-induced tetrahedral symmetry, are still lacking in
the functional. It was noted that the functional can be reduced
to the conventional implicit solvent model after some
macroscopic simplifications are made.

Computer Simulation-Free Energy Perturbation

The most rigorous and reliable approach for estimation
of the solvation free energy using molecular dynamics or
Monte Carlo simulations is the free energy perturbation
(FEP),457 which was thoroughly refined during the 1990s to
allow for systematic estimation of the absolute free energies
of solvation in combination with appropriate thermodynamic
cycles. The computer simulation-FEP methodology can be
divided into two subtypes, the so-called stepwise FEP and
the one-step FEP; both types are based on application of the
thermodynamic perturbation formula of Zwanzig1

which allows the free energy of an end-state B to be
determined from the free energy and an ensemble of a
reference state A. Here R is the molar gas constant, V is the
volume of the system, and 〈 〉 denotes an ensemble average.
By a careful choice of the reference state A, the absolute
free energy for a number of different end-states (B, C, D,...)
can be predicted from a single simulation, given that the free
energy of the reference state A is known. In the stepwise
FEP, the computation of ∆GBA in the isothermal-isobaric
constant NpT ensemble is split into N′ intermediate contigu-
ous states defined by the coupling constant λ; as λ goes from
0 to 1, the classical Hamiltonian H(rN) varies from HA(rN)
to HB(rN). The total ∆GBA is then a sum of the Gibbs free
energy differences between a series of closely related
intermediate states defined by λ.

In eq 54 the perturbations are performed in both directions;
the difference between forward (+ λδ) and backward (-
λδ) simulations gives a lower-bound estimate of the error
in the calculation.458

The traditional stepwise FEP can yield an accurate
solvation free energy for arbitrary species; representative
works are as follows: ref 459 used the MC simulation-
orientated FEP method to investigate the effects of solute
concentration on the calculated free energy of hydration in
a TIP4P water; no remarkable dependence on the solute
concentration was found for the electrostatic free energy of
hydration. As a result, the technically simpler estimation of
the total standard solvation free energy based on simulation
for infinitely dilute solutions is acceptable. In ref 458, the
FEP method was employed to investigate mutation of
complexed Me4N+ into complexed MeNH3

+; good agreement
was obtained between the computed and experimental
relative values of the Gibbs free energy of complexation
within a maximal deviation of 13%; by decoupling the
different mutations from the initial stage to the final state
into several stages, the relative importance of different
contributions to the total change in the Gibbs free energy of
complexation was shown. Calculation of the enthalpy and
entropy change is essential for a better identification of the
type of interactions controlling the association process;
operational expressions for the enthalpy and entropy of
association in the NpT ensemble with the FEP method were
established in ref 460.

The minimal requirement for the one-step FEP is that the
reference state Hamiltonian does not have any singularities
that are not shared by all of the end-state Hamiltonians. Liu
et al.461,462 demonstrated that the singularities associated with
typical molecular mechanics force fields can be removed by
constructing “soft” reference states that can be used for
efficient one-step FEP. With this procedure, the relative
binding free energies for many ligands at a time in proteins
such as the T4 lysozyme462 and the estrogen receptor ligand
binding domain463 were successfully calculated by the one-
step FEP. Schäfer et al.464 showed that a simulation of a
single neutral “soft” reference state could be used to
accurately (errors <3 kJ/mol) predict the solvation free
energies of a range of nonpolar solutes in water. In ref 465
was investigated in detail the choice of reference state for
the one-step FEP; it was found that both a neutral reference
state and a “soft dipole” reference state based on a charge
group scaling of the solute-solvent electrostatic interaction
can be appropriate reference states to be used in the one-
step FEP method for computation of the solvation free energy
of polar solutes. In ref 466, the one-step FEP was applied to
a realistic model of the binding of a set of rather large ligands
to the protein factor Xa. Three limitations to the choice of
the unphysical reference states, which influence the accuracy
of the one-step FEP, were identified: size, its flexibility, and
its electrostatic character.

In order to obtain the free energy differences for multiple
end states from a single simulation by the one-step FEP, it
is useful to expand the sampled ensemble. The expanding

∆GBA ≡ GB - GA ) -RT ln〈e-(HB-HA)/RT〉A

(53)

∆GBA ≡ GB - GA ) ∑
i)1

N′

∆G(λi)

) ∑
λ)0

1

- RT ln〈 Ve-(H(rN;λ(∆λ)-H(rN;λ))/RT

〈V〉 〉
λ

(54)
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strategies vary both in theoretical basis and in implementation
of the sampling protocol,465-467 and the most recent develop-
ment is reported in ref 468.

It should be noted that although eq 53 is formally exact
for all choices of states A and B, the convergence of the
free energy difference is strongly dependent on the overlap
relation of the phase space densities of states A and B.469

Application of the FEP to more complex problems, such as
estimating protein-ligand binding free energies, has been
shown to be difficult due to convergence and sampling
problems.470

Some novel FEP methods are summarized next. The ab
initio/classical FEP method was introduced in ref 471 and
subsequently tested on a solute in water.472 It was shown473

that the method is applicable to ion solvation in water and
can predict the well-known values for the free energies of
hydration of Na+ and Cl- at 573 K and 0.725 g/cm3 within
4 kJ/mol. It was also shown474 that the ab initio/classical
FEP method can provide a practical and systematic means
of developing new model potentials, validating their predic-
tions, and correcting their errors. The advantages of the ab
initio/classical FEP method over the computer simulation-
orientated FEP method and ab initio MD simulation lie in
the fact that the accuracy of the ab initio/classical FEP
method is not limited by the accuracy of the approximate
potentials used and it is only necessary to determine ab initio
energies at a small number of configurations, taken from the
simulation with the approximate model. A novel FEP method
has been proposed475 to compute the free energy of transfer-
ring a molecule between fluid phases, which consists in
drawing a free-energy profile of the target molecule moving
across a binary-phase structure built in the computer. The
novelty of the method lies in the point that the definition of
the free energy profile is distinct from the common definition.
Like the traditional FEP method, the method in ref 475 is
also equally applicable within the MD and MC frameworks,
independently of the way of generating statistical ensembles.
The method is used to evaluate the gas solubility and vapor
pressure of several organic molecules, and the calculated
results are generally in good agreement with experiments.
Besides the vapor-liquid equilibrium, the liquid-liquid
equilibrium of mixtures is clearly also a possible application
of the method.

Ginzburg-Landau Type Approach

Quite recently, Onuki presented476 a Ginzburg-Landau
type theory for solvation of ions in polar binary mixtures.
This scheme accounts for electrostatics with an inhomoge-
neous dielectric constant, solvation effects, and image forces.
With this Ginzburg-Landau scheme, the ion-induced nucle-
ation in a gas phase of polar one-component fluids was
investigated; it was shown477 that the solvation free energy
is larger in the gas phase than in the liquid phase at the same
temperature on the coexistence curve, and this difference
reduces greatly the nucleation barrier in a metastable gas
phase. The Ginzburg-Landau scheme was employed to
study478 the effects of ions in mixtures of both strong and
weak polar fluids by taking account of electrostatic, solvation,
and image interactions, and a general expression was derived
for the surface tension of electrolyte systems. The solvation
effects of charged particles in liquid crystals,479 and solvation
effects in near-critical polar binary mixtures,480 were also
examined with this Ginzburg-Landau scheme.

Distribution Function Integral Equation Theory Approach

The excess chemical potential of solvation can also be
obtained from the distribution function integral equation
theory by the standard procedure of gradually “switching
on” the solute-solvent interactions. When the HNC ap-
proximation is used to close the integral equation, the
solvation chemical potential is given by a closed analytical
expression. However, the solvation chemical potential is no
longer analytical if a nonzero bridge function is used for the
integral equation. Consequently, one has to solve numerically
the integral equation repeatedly at every step of integration
over the “switching” parameter; this implies a significant
computational effort. By making a functional expansion of
the solvation chemical potential around the HNC solution,
Kovalenko and Hirata481 succeed in avoiding repeated
numerical solution of the integral equation to obtain the
hydration free energy of hydrophobic solutes.

It was noted482 that Wertheim’s theory for associating
fluids can be applied to a “Mercedes-Benz” (MB) model
of water through the multidensity OZ integral equation
theory; this approach explicitly accounts for the coupled
orientation dependence of interactions that arises from
multiple hydrogen bonding arms within water molecules, and
hence, it is qualified to study orientations of water molecules
around solutes and not only the distance-dependent structures.
The angle-dependent Wertheim OZ integral equation theory
is employed483 to study the hydrophobic effect and transfer
of a nonpolar solute into the MB water, and it is shown to
reproduce the Monte Carlo results qualitatively for cold water
and quantitatively for hot water.

VI. Summary and Outlook
In the preceding sections we have given an overview of

the foundations and applications of different perturbative
approaches for obtaining the thermodynamic and structural
properties of fluids and solids, with emphasis on the most
recent developments. Perturbation approaches, on the whole,
constitute today the most fruitful procedures to deal with
these properties for a huge variety of systems, from simple
to complex. In many-body problems such as liquids, analyti-
cal solutions rarely exist; we achieve analytical or semiana-
lytical or parametrization solutions only in very few situa-
tions. The perturbation approach provides a starting point
to tackle complicated many-body problems from these known
solutions. In fact, the perturbation approach may be the most
easily kept in memory method when one is faced with any
new complicated problems. As a result, in the field of liquid
theory, perturbation approaches play an important role not
only in the traditional field of thermodynamic perturbation
theory but also in OZ integral equation theory, in density
functional theory, in computer simulation, etc. The perturba-
tion expansion can adopt different forms: it can take the form
of an inverse temperature expansion such as HTSE, a
coupling parameter expansion such as the numerical
Ornstein-Zernike equation perturbation theory, a density
expansion such as the virial expansion, a general order
parameter expansion such as the Ginzburg-Landau theory,
etc. As the perturbation approach only provides, in some
cases, a rudimentary treatment, its improvement is necessary
by combining it with other theoretical approaches, such as
computer simulation, OZ integral equation theory, renor-
malization group theory, etc., as reviewed in the text. This
is the reason why we include in the review theoretical
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approaches other than thermodynamic perturbation theory,
even if any of the above approaches will deserve a single
and specific review. In any case, the more effort invested in
the research on complex fluids, molecular liquids, and even
more complicated biologically interesting systems, the greater
will be the role played by perturbation approaches. Cor-
respondingly, an irreversible tendency will be a joint action
of the perturbation approach with various other theoretical
ways to improve the accuracy.

The flexibility of these theories, the relative simplicity of
their application in many cases, their ability for parametrizing
experimental data, and the interchangeability of their findings
(that is the fact that the outcome from some theories can be
used as input for other theories giving rise to hybrid theories,
as shown in this short review) will ensure for these
approaches a long life cycle and a rapid growth in their
usefulness and practical applications in the coming years,
as occurred in the last few decades. Unfortunately, this rapid
growth will make it in the future very difficult to provide a
global overview on these approaches in a single review, as
attempted in the present one, as any of the above sections
will deserve a specific review, with the drawback that this
might obscure the interplay between theories belonging to
different approaches. We hope that this review will act as a
guide in this field, helping new developments to be placed
in due context.

VII. List of Symbols
f(r) Mayer f-function
A Helmholtz free energy (also denoted F)
Aideal ideal gas contribution to the Helmholtz free energy

Amono monomer contribution to the Helmholtz free en-
ergy

Achain chain contribution to the Helmholtz free energy
Aassoc contribution to the Helmholtz free energy from

association
Bn virial coefficient of order n
B(r) bridge function
c(r) direct correlation function
c(1)(r[F]) nonuniform first-order direct correlation function
c0

(n) bulk n-th direct correlation function
catt

(2)(r;Fb) bulk second-order direct correlation function cor-
responding to the perturbation part of the
potential

d effective diameter
f Helmholtz free energy per particle
F Helmholtz free energy (also denoted A)
Fn perturbative contribution of order n to the free

energy
Fex excess Helmholtz free energy
Fper perturbation contribution to the excess Helm-

holtz free energy
g(r) radial distribution function
g0(r) radial distribution function of the reference system

g1(r) first-order perturbative contribution to the radial
distribution function

gij(r) partial radial distribution function for particles of
species i and j in a mixture

gij
0(r) partial radial distribution function for particles of

species i and j in a reference mixture
G Gibbs free energy
h(r) total correlation function
H(x) Heaviside step function
k Boltzmann’s constant
N number of particles in the system

Ni number of intermolecular distances in the range
(ri,ri+1)

p pressure
r intermolecular distance
r* r/σ: reduced distance
T temperature
T* reduced temperature
u(r) intermolecular potential
u0(r) reference part of the intermolecular potential
u1(r) perturbation part of the intermolecular potential
u1*(r) perturbation part of the intermolecular potential

in reduced units
V volume
w(r) weighting function
xi mole fraction of species i in a mixture
y(r) cavity function
Z pV/NkT: compressibility factor

Greek Symbols
� 1/kT
δij effective distance of closest approach between

the centers of two molecules of species i and j
in a mixture

ε energy parameter of the potential
λ coupling parameter and also the width of the

square-well potential in reduced units
µ chemical potential
F N/V: number density
F* σF3: reduced density
F̃ effective density
F̂ weighted density
Fj local density averaged over a sphere of appropri-

ate radius
Fb bulk density
F(r) local density at position r
Φ1 contribution of the perturbation to the configura-

tional energy of the system
σ diameter of the hard spheres
σij distance of closest approach between the centers

of two spheres of species i and j in a hard-
sphere mixture

µ chemical potential
	T isothermal compressibility

Abbreviations
BDFA bridge density functional approximation
BH Barker-Henderson
BMCSL Boublı́k-Mansoori-Carnahan-Starling-Leland
CPE coupling parameter expansion
DCF direct correlation function
DFA density functional approximation
DFT density functional theory
EOS equation of state
EXP exponential approximation
FEP free energy perturbation
FMF fundamental measure functional
FMT fundamental measure theory
FPE functional perturbation expansion
GL Ginnzburg-Landau
HB hard-body
HCY hard-core Yukawa
HNC hypernetted-chain theory
HRT hierarchical reference theory
HS hard spheres
HTSE high temperature series expansion
IE integral equation
LCA local compressibility approximation
LJ Lennard-Jones
LTDFA Lagrangian theorem-based density functional ap-

proximation
MB Mercedes Benz
MC Monte Carlo
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MCA macroscopic compressibility approximation
MD molecular dynamics
MFA mean field approximation
MSA mean spherical approximation
OCT optimized cluster theory
ORPA optimized random phase approximation
PWDA perturbation weighted density approximation
OK Ohta-Kawasaki
OZ Ornstein-Zernike
rdf radial distribution function
RG renormalization group
RHNC reference hypernetted-chain theory
RPA random phase approximation
SAFT statistical associating fluid theory
SAFT-HS original SAFT for molecules consisting in hard-

sphere segments
SAFT-VR variable range SAFT
HR-SAFT,

soft-SAFT,
DAFT-D,...

different versions of the SAFT

SCOZA self-consistent Ornstein-Zernike approximation
SS square shoulder
SW square well
TPT thermodynamic perturbation theory
TPTD dimer version of the TPT
TW triangle well
VLE vapor-liquid equilibrium
vdW van der Waals
vdW1 van der Waals one-fluid theory
WCA Weeks-Chandler-Andersen
WDA weighted density approximation
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(464) Schäfer, H.; van Gunsteren, W. F.; Mark, A. E. J. Comput. Chem.

1999, 20, 1604.
(465) Pitera, J. W.; van Gunsteren, W. F. J. Phys. Chem. B 2001, 105,

11264.
(466) Oostenbrink, C.; van Gunsteren, W. F. J. Comput. Chem. 2003, 24,

1730.
(467) (a) Berg, B. A.; Neuhaus, T. Phys. ReV. Lett. 1992, 68, 9. (b)

Escobedo, F. A.; de Pablo, J. J. J. Chem. Phys. 1995, 103, 2703. (c)
Radmer, R. J.; Kollman, P. A. J. Comput. Chem. 1997, 18, 902. (d)
Guo, Z.; Brooks, C. L.; Kong, X. J. Phys. Chem. B 1998, 102, 2032.
(e) Son, H. S.; Kim, S.-Y.; Lee, J.; Han, K.-K. Bioinformatics 2006,
22, 832.

(468) (a) Christ, C. D.; van Gunsteren, W. F. J. Chem. Phys. 2007, 126,
184110. (b) Christ, C. D.; van Gunsteren, W. F. J. Chem. Phys. 2008,
128, 174112.

(469) (a) Kofke, D. A. Mol. Phys. 2004, 102, 405. (b) Wu, D.; Kofke,
D. A. J. Chem. Phys. 2005, 123, 054103.

(470) (a) Hermans, J.; Wang, L. J. Am. Chem. Soc. 1997, 119, 2707. (b)
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